Advertisement

Numerical simulations of spin glasses

  • I. Morgenstern
Theoretical Papers
Part of the Lecture Notes in Physics book series (LNP, volume 192)

Abstract

In this contribution to the proceedings I carried out the full chronological line in numerical simulations to give clear evidence against a phase transition in shortrange spin glass models at least in two dimensions. Furtheron I consider the observation time necessary to obtain equilibrium states at low temperatures — it exceeds 100 years. Then I provide the theory of a new phenomenon: the time dependent specific heat. It is hoped that this effect helps experimentalists to provide convincing evidence in favour or against a transition.

Keywords

Partition Function Energy Barrier Spin Glass Free Energy Barrier Frustration Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. F. Edwards and P. W. Anderson, J. Phys. F5, 965 (1975)Google Scholar
  2. 2.
    G. Toulouse, in: Disordered systems and localization, Springer Lecture Notes in Physics 149 (1981)Google Scholar
  3. 3.
    I. Morgenstern and K. Binder, Phys. Rev. Lett. 43, 1615 (1979)Google Scholar
  4. 4.
    I. Morgenstern and K. Binder, Phys. Rev. B22, 288 (1980)Google Scholar
  5. 5.
    I. Morgenstern and K. Binder, Z. Phys. B39, 227 (1980)Google Scholar
  6. 6.
    I. Morgenstern and H. Horner, Phys. Rev. B25, 504 (1982)Google Scholar
  7. 7.
    D. Sherrington and S. Kirkpatrick, Phys. IR-ev. Lett. 35, 1792 (1975)Google Scholar
  8. 8.
    P. Hoever, W. F. Wolff and J. Zittartz, Z. Phys. B44, 129 (1981)Google Scholar
  9. 9.
    S. Kirkpatrick, Phys. Rev. B16, 4630 (1977)Google Scholar
  10. 10.
    A. J. Bray and M. A. Moore, J. Phys. F7, L333 (1977)Google Scholar
  11. 11.
    K. Binder, Fundamental Problems in Statistical Mechanics V, North-Holland, Amsterdam (1980)Google Scholar
  12. 12.
    R. E. Walstedt and L. R. Walker, Phys. Rev. Lett. 47, 1624 (1981)Google Scholar
  13. 13.
    J. A. Mydosh, in: Disordered Systems and localizat of n, Springer Lecture Notes in Physics 149 (1981)Google Scholar
  14. 14.
    K. Binder, in: Monte Carlo Methods in Statistical Physics, Springer, Berlin (1979)Google Scholar
  15. 15.
    A. P. Malozemoff and Y. Imry, Phys. Rev. B24, 289 (1981)Google Scholar
  16. 16.
    B. Barbara, A. P. Malozemoff and Y. Imry, Phys. Rev. Lett. 47, 1852 (1981)Google Scholar
  17. 17.
    J. Souletie, private communicationGoogle Scholar
  18. 18.
    A. P. Young, Phys. Rev. Lett. 50, 1509 (1983)Google Scholar
  19. 19.
    See e.g. McCoy and Wu, The Two-Dimensional Ising Model, Harvard (1973)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • I. Morgenstern
    • 1
  1. 1.Institut für Theoretische PhysikUniversität HeidelbergHeidelbergGermany

Personalised recommendations