Advertisement

The spin glass transition: a comparison of Monte Carlo simulations of nearest-neighbor Ising Edwards-Anderson models with experiments

  • K. Binder
  • W. Kinzel
Theoretical Papers
Part of the Lecture Notes in Physics book series (LNP, volume 192)

Abstract

Numerical studies of Ising square lattices with random bonds (Jij=±J or drawn from a gaussian distribution) are reviewed. Particular attention is paid to the temperature- and field dependence of the equilibrium magnetization M(H,T). While for a symmetric bond distribution the zero-field susceptibility trivially follows a Curies law Xo∝ T−1, the nonlinear susceptibility Xn shows a dramatic temperature-dependence, which can nearly be mistaken for a power-law divergence at a freezing temperature Tf. These findings are compared in detail with corresponding experimental data, including possible “scaling” representations. We relate this behavior to the onset of long-range Edwards-Anderson order as T→0, as measured by the correlation function gEA(rij)=[<SiSj> T 2 ]av

We then discuss time-dependent quantities: the spin-spin autocorrelation function and the time-dependent Edwards-Anderson order parameter q(t), dynamic susceptibility χ(t) etc.; also the onset of irreversible behavior at critical magnetic fields Hc(t) is emphasized, and again compared to experiments. A possible explanation of this behavior in terms of the free energy barriers separating the various “valleys” in configuration space is indicated.

Keywords

Spin Glass Critical Field Small Field Nonlinear Susceptibility Monte Carlo Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Néel, Ann. Geophys. l5, 99 (1949)Google Scholar
  2. [2]
    J.L. Tholence and R. Tournier, J. Phys. (Paris) 35, C4–229 (1974)Google Scholar
  3. [3]
    J.L. Tholence, J. Appl. Phys. 50, 7310 (1979); Solid State Comm. 35, 113 (1980)Google Scholar
  4. [4]
    E.P. Wohlfarth, Physica 86-88B, 852 (1977); J. Phys. F10, 1,241 (1980); Phys. Lett. 70A, 489 (1979); E.P. Wohlfarth and S. Shtrikman, Phys. Lett. 85A, 467 (1981)Google Scholar
  5. [5]
    M. Gyrot, Solid State Comm. 39, 1009 (1981)Google Scholar
  6. [6]
    For a review, see J.A. Mydosh, J. Mag. Magn. Mat. 7, 237 (1978)Google Scholar
  7. [7]
    G. Eiselt, J. Kötzler, H. Maletta, D. Stauffer and K. Binder, Phys. Rev. B19, 2664 (1979)Google Scholar
  8. [8]
    S.F. Edwards and P.W. Anderson, J. Phys. F5, 965 (1975)Google Scholar
  9. [9]
    D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35, 1792 (1975)Google Scholar
  10. [10]
    G. Parisi, J. Phys. A13, L115 (1980); Phil. Mag. B41,677 (1980)Google Scholar
  11. [11]
    H. Sompolinsky, Phys. Rev. Lett. 47, 935 (1981); H. Sompolinsky and A. Zippelius, Phys. Rev. B25, 6860 (1982); J. Hertz, J. Phys. C16, 1219 (1983); 1233 (1983)Google Scholar
  12. [12]
    A.P. Young, J. Phys. C14, L1085 (1981); A.P. Young and S. Kirkpatrick, Phys. Rev. B25, 440 (1982); A. Houghton, S. Jain and A.P. Young, preprint; N.D. Mackenzie and A.P. Young, Phys. Rev. Lett. 49, 301 (1982), and preprint; A.P. Young and C. de Dominicis, preprintGoogle Scholar
  13. [13]
    R.G. Palmer, Adv. Phys. 31, 669 (1982)Google Scholar
  14. [14]
    J.R.L. De Almeida and D.J. Thouless, J. Phys. A11, 983 (1978)Google Scholar
  15. [15]
    G. Parisi and G. Thouless, J. Phys. Lett. (Paris) 41, L361 (1980); G. Toulouse, M. Gabay, T.C. Lubensky and J. Vannimenus, J. Phys. Lett. 43, L109 (1982)Google Scholar
  16. [16]
    M.E. Fisher, Rev. Modern Phys. 46, 597 (1974)Google Scholar
  17. [17]
    A.B. Harris, T.C. Lubensky, and J.H. Chen, Phys. Rev. Lett. 38, 765 (1976)Google Scholar
  18. [18]
    R. Fisch and A.B. Harris, Phys. Rev. Lett. 38, 785 (1977)Google Scholar
  19. [19]
    A.J. Bray and M.A. Moore, J. Phys. F7, L333 (1977); A.J. Bray, M.A. Moore, and P. Reed, J. Phys. C11, 1187 (1978)Google Scholar
  20. [20]
    A.J. Bray and M.A. Moore, Phys. Rev. Lett. 41, 1068 (1978); J. Phys. C12, 1,441 (1979); see also H. Sompolinsky and A. Zippelius, Phys. Rev. Lett. 50,1294 (1983)Google Scholar
  21. [21]
    I. Morgenstern and K. Binder, Phys. Rev. Lett. 43, 1615 (1979); Phys. Rev. B22, 288 (1980)Google Scholar
  22. [22]
    I. Morgenstern and K. Binder, Z. Phys. B39, 227 (1980)Google Scholar
  23. [23]
    J.R. Banavar and M. Cieplak, Phys. Rev. Lett. 82, 832 (1982)Google Scholar
  24. [24]
    W. Kinzel and K.H. Fischer, J. Phys. C11, 2115 (1978), and references thereinGoogle Scholar
  25. [25]
    P.W. Anderson and C.W. Pand, Phys. Rev. Lett. 40, 903 (1978)Google Scholar
  26. [26]
    D. Stauffer and K. Binder, Z. Physik B30, 313 (1978); B34, 97 (1979)Google Scholar
  27. [27]
    L. Lundgren, P. Svedlindh, and O. Beckmann, Phys. Rev. B26, 3990 (1982)Google Scholar
  28. [28]
    P. Monod and H. Bouchiat, J. Phys. Lett. (Paris) 43, L45 (1982)Google Scholar
  29. [29]
    B. Barbara, A.P. Malozemoff, and Y. Imry, Phys. Rev. Lett. 47, 1852 (1981); A.P. Malozemoff, B. Barbara, and Y. Impry, J. Appl. Phys. 53, 2205 (1982)Google Scholar
  30. [30]
    B. Barbara, A.P. Malozemoff, and Y. Imry, Physica 108B+C, 1289 (1981)Google Scholar
  31. [31]
    A. Berton, J. Chaussy, J. Odin, B. Rammal, and R. Tournier, J. Phys. Lett.(Pais) 43, L–153 (1982)Google Scholar
  32. [32]
    R. Omari, J.J. Prejean, and J. Souletie, J. phys. (Paris) in pressGoogle Scholar
  33. [33]
    J. Ferré, J. Rajchenbach and H. Maletta, J. Appl. Phys. 52, 1967 (1981)Google Scholar
  34. [34]
    M. Guyot, S. Foner, S.K. Hasanain, R.P. Guertin, and K. Westerhold, Phys. Lett. 79A, 339 (1980)Google Scholar
  35. [35]
    MB. Salamon, K.V. Rav, and Y. Yeshurun, J. Appl. Phys. 52, 1687 (1981)Google Scholar
  36. [36]
    R.V. Chamberlin, M. Hardiman, L.A. Turkevich and R. Orbach, Phys. Rev. B25, 6720 (1982)Google Scholar
  37. [37]
    Y. Yeshurun and H. Sompolinsky, Phys. Rev. B26, 1487 (1982)Google Scholar
  38. [38]
    N. Bontemps, J. Rajchenbach, and R. Orbach, J. Phys. Lett. (Paris) 44, L47 (1983)Google Scholar
  39. [39]
    M.B. Salamon, and J.L. Tholence, J. Appl. Phys. 53, 7684 (1982); J. Magn. Mag. Mat., in pressGoogle Scholar
  40. [40]
    J. Hamida, C. Paulsen, S.J. Williamson, and H. Maletta, preprintGoogle Scholar
  41. [41]
    K. Binder and K. Schröder, Phys. Rev. B14, 2142 (1976)Google Scholar
  42. [42]
    K. Binder, Z. Phys. B26, 339 (1977)Google Scholar
  43. [43]
    W. Kinzel, Phys. Rev. B19, 4594 (1979)Google Scholar
  44. [44]
    K. Binder and D. Stauffer, Phys. Lett. 57A, 177 (1976)Google Scholar
  45. [45]
    Note that finite energy barriers between different ground states need not rule out a phase transition, see P. Hoever, W.F. Wolff, and J. Zittartz, Z. Phys. B41, 43 (1981); B42, 259 (1981); P. Hoever and J. Zittartz, Z. Phys. B44, 129 (1981)Google Scholar
  46. [46]
    I. Morgenstern, J. Appl. Phys. 53, 7682 (1982); Phys. Rev. B27, 4522 (1983); see also I. Morgenstern, and H. Horner, Phys. Rev. B25, 504 (1982)Google Scholar
  47. [47]
    W. Kinzel, Z. Phys. B46, 59 (1982)Google Scholar
  48. [48]
    W. Kinzel, Phys. Rev. B26, 6303 (1982)Google Scholar
  49. [49]
    K. Binder and I. Morgenstern, Phys. Rev. B27, 5826 (1983)Google Scholar
  50. [50]
    K. Binder, Z. Phys. B48, 319 (1982)Google Scholar
  51. [51]
    A.P. Young, Phys. Rev Lett. 50, 917 (1983)Google Scholar
  52. [52]
    W. Kinzel and K. Binder, Phys-Rev. Lett. 50, 1509 (1983); and to be publishedGoogle Scholar
  53. [53]
    K. Binder and D. Stauffer, in Monte Carlo Methods in Statistical Physics (K. Binder, ed., Springer, Berlin 1979) p.301; K. Binder, J. Phys. (Paris) 39, C61527 (1978); K. Binder, in Ordering in Strongly Fluctuating Condensed Matter Systems (T. Riste, ed., Plenum Press, New York 1979) p.423; K. Binder and D. Stauffer, in Monte Carlo Methods in Statistical Physics II (K. Binder, ed., Springer, to be published).Google Scholar
  54. [54]
    H. Hilhorst and B. Derrida, J. Phys. C14, L539 (1981)Google Scholar
  55. [55]
    J.L. van Hemmen and I. Morgenstern, J. Phys. C15, 4353 (1982)Google Scholar
  56. [56]
    J.A. Mydosh, J. Phys.Soc. Jpn. 52, Suppl. p.85 (1983)Google Scholar
  57. [57]
    P.C. Hohenberg and B.I.Halperin, Rev. Mod. Phys. 49, 435 (1977)Google Scholar
  58. [58]
    I. Morgenstern, Phys. Rev. B25, 6067 (1982)Google Scholar
  59. [59]
    H. Maletta, J. Phys. (Paris) C6, 115 (1980), and references thereinGoogle Scholar
  60. [60]
    B. Barbara, and A.P. Malozemoff, Proc. 16th Rare Earth Research Conf., Florida State Univ., April 1983 to be publishedGoogle Scholar
  61. [61]
    It should be noted that the physical significance of the shift of the susceptibility maximum at very small fields can be questioned on a various physical grounds: (i) it may be an artefact due to macroscopic sample inhomogeneities (H. Alloul, private communication) (ii) it may be an effect specific for Heisenberg spins, just as there exists for isotropic Heisenberg antiferromagnets in a field a cuspshaped umbilicus of the critical temperatures.Tc(H),Tc(-H), which merge at the T-axis in a bicritical point (G. Toulouse, private communication). In Ising spin glasses for d<d none of these alternative explanations can apply, however.Google Scholar
  62. [62]
    These data were obtained in [41] by stepwise decrease of H at constant T, and thus for small H near Tf are slightly affected by observation time effects. The scaling analysis of Sec.IV hence uses more accurate recent simulation data [52] obtained by field-cooling as in Figs.1,2.Google Scholar
  63. [63]
    J. Chalupa, Solid State Commun. 24, 429 (1977); M. Suzuki, Progr. Theor. Phys. 58, 1151 (1977); K. Binder, Festkörperprobleme 17, 55 (1977)Google Scholar
  64. [64]
    N. Bontemps and J. Rajchenbach, to be publishedGoogle Scholar
  65. [65]
    K. Binder and W. Kinzel, in Lecture Notes in Physics 149, p.124 (ed. by C. di Castro) Springer Berlin, Heidelberg and New York, 1981.Google Scholar
  66. [66]
    F. Mezei, in Recent Developments in Condensed Matter Physics ed. J.T. Devreese (Plenum, Press, New York 1981) Vol.l, p.679Google Scholar
  67. [67]
    D. Hüser, L.E. Wenger, A.J. van Duyneveldt and J.A. Mydosh, Phys. Rev. B, in pressGoogle Scholar
  68. [68]
    D.E. Mac Laughlin, L.C. Gupta, R.H. Heffner, M. Leon, and M.E. Schillaci, to be publishedGoogle Scholar
  69. [69]
    A.P. Malozemoff and Y. Imry: Phys. Rev. B24, 489 (1981)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • K. Binder
    • 1
  • W. Kinzel
    • 1
  1. 1.Institut für FestkörperforschungKernforschungsanlage JülichJülichW.-Germany

Personalised recommendations