A study of short-range spin glasses

  • H. Sompolinsky
  • A. Zippelius
Theoretical Papers
Part of the Lecture Notes in Physics book series (LNP, volume 192)


Spatial fluctuations in spin glasses are studied by an expansion around the dynamic mean field theory. We discuss the properties of the low temperature phase, in particular the stability and consistency of mean field theory and identify the most divergent fluctuations and the resulting special dimensionalities of the model. The dynamic critical behaviour is studied within an e expansion around the upper critical dimension du=6.


Spin Glass Mean Field Theory Dynamic Exponent Stable Fixed Point Dynamic Mean Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. /1/.
    For a recent review, see R. Rammal and J. Souletie in Magnetism of Metals and Alloys, Ed. M. Cyrot, North Holland 1981, p. 342; K. Fischer, phys. stat. sol. (b) 116, 357 (1983)Google Scholar
  2. /2/.
    B. Barbara, A.P. Malozemoff, and Y. Imry, Phys. Rev. Lett. 47, 1852 (1981); P. Monod and H. Bouchiat, J. Phys. Lett. (Paris) 43, L45 (1982); A. Berton, J. Chaussy, J. Odin, B. Rammal, and R. Tournier, J. Phys. Lett. (Paris) 43, 1.-153 (1982); R. Omari, J.J. Préjean, and J. Souletie, J. Phys. (Paris) in pressGoogle Scholar
  3. /3/.
    R. Fisch and A.B. Harris, Phys. Rev. Lett., 38, 785 (1977)Google Scholar
  4. /4/.
    I. Morgenstern and K. Binder, Phys. Rev. Lett. 43, 1615 (1979); Phys. Rev. B22, (1980); Z. Phys. B39, 227 (1980)Google Scholar
  5. /5/.
    H. Sompolinsky, Phys. Rev. Lett. 47, 935 (1981)Google Scholar
  6. /6/.
    H. Sompolinsky and A. Zippelius, Phys. Rev. Lett. 47, 359 (1981); Phys. Rev. B25, 6860 (1982); J.A. Hertz, A. Khurana, M. Puoskari, Phys. Rev. B25, 2065 (1982)Google Scholar
  7. /7/.
    H. Sompolinsky and A. Zippelius, Phys. Rev. Lett. 50, 1297 (1983)Google Scholar
  8. /8/.
    A.J. Bray and M.A. Moore, J. Phys. C12, 79 (1979); E. Pytte and J. Rudnick, Phys. Rev. B19, 3603 (1979)Google Scholar
  9. /9/.
    D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35, 1792 (1975)Google Scholar
  10. /10/.
    H.J. Sommers, Z. Phys. B32, 173 (1979)Google Scholar
  11. /11/.
    C. De Dominicis and T. Garel, J. Phys. (Paris) 40, L576 (1979)Google Scholar
  12. /12/.
    A.B. Harris, T.C. Lubensky and J.H. Chen, Phys. Rev. Lett. 36, 415 (1976)Google Scholar
  13. /13/.
    A.J. Bray and S.A. Roberts, J. Phys. C13, 5405 (1980)Google Scholar
  14. /14/.
    J.R.L. de Almeida and D.J. Thouless, J. Phys. A11, 983 (1978)Google Scholar
  15. /15/.
    J.H. Chen and T.C. Lubensky, Phys. Rev. B16, 2106 (1977)Google Scholar
  16. /16/.
    A. Zippelius, to be publishedGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • H. Sompolinsky
    • 1
  • A. Zippelius
    • 2
  1. 1.Dept. of PhysicsBar-Ilan UniversityRamat-GanIsrael
  2. 2.Institut für FestkdrperforschungJülichGermany

Personalised recommendations