Advertisement

Equilibrium theory of spin glasses: Mean-field theory and beyond

  • J. L. van Hemmen
Theoretical Papers
Part of the Lecture Notes in Physics book series (LNP, volume 192)

Abstract

In this paper a new technique is analyzed to solve certain mean-field models, with particular emphasis on the spin-glass case. We also present an extended Gibbs formalism which is based on the observation that every equilibrium state can be decomposed uniquely into its ergodic components, and apply it to spin-glasses.

Keywords

Spin Glass Gibbs State Free Energy Barrier Fixed Point Equation Ergodic Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.F. Edwards and P.W. Anderson, J.Phys.F 5 (1975) 965Google Scholar
  2. 2.
    J.A. Mydosh, in: Springer Lecture Notes in Physics 149 (1981) 87–106Google Scholar
  3. 3.
    A.C.D. van Enter and J.L. van Hemmen, Phys.Rev.A 29 (1984)Google Scholar
  4. 4.
    J.L. van Hemmen, Phys.Rev.Lett. 49 (1982) 409; J.L. van Hemmen, A.C.D. van Enter, and J. Canisius, Z.Phys.B 50 (1983) 311Google Scholar
  5. 5.
    A.P. Malozemoff and Y. Imry, Phys.Rev.B 24 (1981) 489Google Scholar
  6. 6.
    P. Monod and H. Bouchiat, J.Phys. (Paris) 43 (1982) L 45Google Scholar
  7. 7.
    R. Omari, J.J. Préjean, and J. Souletie, to be published; J. Souletie, these proceedingsGoogle Scholar
  8. 8.
    N. Bontemps and J. Rajchenbach, to be published; H. Maletta, G. Aeppli, and S.M. Shapiro, J.Magn.Magn.Mater. 31–34 (1983) 1367Google Scholar
  9. 9.
    R.P. Feynman, Statistical Mechanics (Benjamin, Reading, 1972)p.1Google Scholar
  10. 10.
    L. Lundgren, P. Svedlindh, and O. Beckmann, Phys.Rev.B 26 (1982) 3990Google Scholar
  11. 11.
    H. Maletta, in: Excitations in disordered systems, edited-by M.F. Thorpe (Plenum, New York, 1982) pp.431–462Google Scholar
  12. 12.
    A.C.D. van Enter and J.L. van Hemmen, J.Stat.Phys. 32 (1983) 141 and work in preparation; K.M. Khanin and Ya.G. Sinai, J.Stat.Phys. 20 (1979) 573Google Scholar
  13. 13.
    P.M. Levy and A. Fert, Phys.Rev.B 23 (1981) 4667Google Scholar
  14. 14.
    P.W. Anderson, Rev.Mod.Phys. 50 (1978) 199Google Scholar
  15. 15.
    J.L. van Hemmen and R.G. Palmer, J.Phys.A: Math.Gen. 15 (1982) 3881Google Scholar
  16. 16.
    J.A. Mydosh, these proceedingsGoogle Scholar
  17. 17.
    K. Binder and K. Schröder, Phys.Rev.B 14 (1976) 2142; in particular Fig.1Google Scholar
  18. 18.
    See also J.P. Provost and G. Vallée, Phys.Rev.Lett. 50 (1983) 598Google Scholar
  19. 19.
    By the strong law of large numbers applied to the ξ's and the η's. See L. Breiman, Probability (Addison-Wesley, Reading, 1968) Sec. 3.6Google Scholar
  20. 20.
    A.W. Roberts and D.E. Varberg, Convex functions (Academic Press, New York, 1973) pp. 30 and 110. This excellent book contains a wealth of information.Google Scholar
  21. 21.
    H. Cramér, Act.Sci.Ind., vol.736 (Herman, Paris, 1938) pp.5–23; H. Chernoff, Ann. Math.Stat. 23 (1952) 493. Textbook versions have been given by O.E. Lanford, Springer Lecture Notes in Physics 20 (1973) 35–49, and R.J. Serfling, Approximation theorems of mathematical statistics (Wiley, New York, 1980)pp. 326–328.Google Scholar
  22. 22.
    Ref.4 (Z.Phys.), Sec. VIGoogle Scholar
  23. 23.
    R.B. Griffiths, C.-Y. Weng, and J.S. Langer, Phys.Rev. 149 (1966) 301Google Scholar
  24. 24.
    D.C. Mattis, Phys.Lett. 56A (1976) 421Google Scholar
  25. 25.
    G. Toulouse, Commun.Phys. 2 (1977) 115Google Scholar
  26. 26.
    A.F.J. Morgownik and J.A. Mydosh, Phys.Rev.B 24 (1981) 5277Google Scholar
  27. 27.
    S. Nagata, P.H. Keesom, and H.R. Harrison, Phys.Rev.B 19 (1979) 1633Google Scholar
  28. 28.
    R.W. Knitter and J.S. Kouvel, J.Magn.Magn.Mater. 21 (1980) L316Google Scholar
  29. 29.
    P.W. Anderson, B.I. Halperin, C.M. Varma, Phil.Mag. 25 (1972) 1Google Scholar
  30. 30.
    L.E. Wenger, and P.H. Keesom, Phys.Rev.B 13 (1979) 4053Google Scholar
  31. 31.
    D.L. Martin, Phys.Rev.B 21 (1980) 1906Google Scholar
  32. 32.
    K. Binder, In: Fundamental problems in statistical mechanics, vol.V, edited by E.G.D. Cohen (North-Holland, Amsterdam, 1980) pp.21–51Google Scholar
  33. 33.
    E. Ising, Z.Phys. 31 (1925) 253, in particular pp.256–7Google Scholar
  34. 34.
    The idea reappears in the more recent literature; e.g. R.B. Griffiths, Phys.Rev. 152 (1966) 240, Fig. l. The formalism of section 4.2 nicely explains the main results of this paper. See also R.G. Palmer, Adv.Phys. 31 (1982) 669, Fig. 2Google Scholar
  35. 35.
    D.C. Mattis, The theory of magnetism I (Springer, New York, 1981) §6.6. Note that, if λ is large, the effective range of the interaction greatly exceeds that of I/R6; cf. section 1.2Google Scholar
  36. 36.
    K. Huang, Statistical Mechanics (Wiley, New York, 1963) chapters 8 and 9Google Scholar
  37. 37.
    G.E. Uhlenbeck and G.W. Ford, Lectures in Statistical Mechanics (American Mathematical Society, Providence, R.I., 1963) chapter IGoogle Scholar
  38. 38.
    C.N. Yang and T.D. Lee, Phys.Rev. 87 (1952) 404; Ref.36, §§15.1 and 15.2 39. R.B. Israel, Convexity in the theory of Zattice gases (Princeton University Press, Princeton, N.J., 1979)Google Scholar
  39. 40.
    In passing we note that a finite range of the interaction is not strictly necessary to derive the DLR equations.Google Scholar
  40. 41.
    A. Munster, Statistische Thermodynamik (Springer, Berlin, 1956) §5.12Google Scholar
  41. 42.
    R.L. Dobrushin and S.B. Shlosman, Sel.Math.Sov. 1 (1981) 317–338Google Scholar
  42. 43.
    J.M. Kosterlitz and D.J. Thouless, J.Phys.C 6 (1973) 1181; J. Fröhlich and T. Spencer, Commun.Math.Phys. 81 (1981) 527Google Scholar
  43. 44.
    L. Onsager, Phys.Rev. 65 (1944) 117; cf. Ref.36, chapter 17Google Scholar
  44. 45.
    G. Parisi, Phys.Rev.Lett 50 (1983) 1946Google Scholar
  45. 46.
    C. de Dominicis and A.P. Young, J.Phys.A: Math.Gen., 16 (1983) 2063Google Scholar
  46. 47.
    A. Houghton, S. Jain, and A.P.Young, J.Phys.C 16 (1983) L375Google Scholar
  47. 48.
    A.P. Young,these proceedingsGoogle Scholar
  48. 49.
    Monte Carlo methods in statistical physics, edited by K. Binder (Springer Verlag, Berlin-Heidelberg-New York, 1979)Google Scholar
  49. 50.
    R.G. Palmer, Adv.Phys. 31 (1982) 669, and these proceedingsGoogle Scholar
  50. 51.
    B. Simon and A. Sokal, J.Stat.Phys. 25 (1981) 679, sections 1 and 2Google Scholar
  51. 52.
    See, for instance, A.C.D. van Enter and R.B. Griffiths, Commun.Math.Phys. 90 (1983) 319Google Scholar
  52. 53.
    A.C.D. van Enter and J.L. van Hemmen, Ref.12, section 3Google Scholar
  53. 54.
    L. Landau, J.F. Perez, and W.F. Wreszinski, J.Stat.Phys. 26 (1981) 755; Ph.A. Martin, Nuovo Cimento 68B (1982) 302Google Scholar
  54. 55.
    A. Blandin, M. Gabay, and T. Garel, J.Phys.C 13 (1980) 403.Google Scholar
  55. 56.
    R. Kindermann and J.L. Snell, Markov random fields and their applications (American Mathematical Society, Providence, R.I. 1980). This is their Fig.18 on p.59. I thank the authors for their permission to reproduce it here.Google Scholar
  56. 57.
    All we need here is Kingman's subadditive ergodic theorem. See J.F.C. Kingman, in: Springer Lecture Notes in Mathematics 539 (1976) 168–223; also Y. Derriennic, C.R. Acad.Sci.Paris 281A (1975) 985–988Google Scholar
  57. 58.
    See Roberts and Varberg [20], section 51.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • J. L. van Hemmen
    • 1
  1. 1.Sonderforschungsbereich 123Universität HeidelbergHeidelberg 1Germany

Personalised recommendations