The ferro- and ferrimagnetic — spin glass transition as studied by Mössbauer spectroscopy

  • R. A. Brand
  • V. Manns
  • W. Keune
Experimental Papers
Part of the Lecture Notes in Physics book series (LNP, volume 192)


We show in the examples of Au-16.8 at% Fe, the metallic glass Fe xNi78−xSi9B13 and the spinel Mg1+tFe2−2t TitO4 that the transition from ferro-(first two), or ferri magnetic (last) to a spin-glass-like state can be determined by Mössbauer spectros copy. Spectra taken in external magnetic field show that strong spin canting starts at this transition, while in zero external field the transition is accompanied by an anomalous increase in the saturation average hyperfine field in the low temperature state, proportional to the average magnetic moment. These results indicate that the transition is not simply a spin rotation, but is the condensation of transverse spin degrees of freedom in the spin-glass-like state, as in recent models for Heisenberg infinite ranged and short ranged spin glasses.


External Field Metallic Glass Spin Glass Hyperfine Field Magnetic Phase Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. J. Nieuwenhuys, B.H. Verbeek and J.A. Mydosh, J. Appl.Phys. 50 (1979) 1685.Google Scholar
  2. 2.
    D. Sherrington and S. Kirkpatrick, Phys.Rev.Lett. 35 (1975) 1792, and S. Kirkpatrick and D. Sherrington, Phys.Rev. B17 (1978) 4384.Google Scholar
  3. 3.
    J.R.L. de Almeida and D.J. Thouless, J.Phys. A: Math.Gen 11 (1978) 983, and M. Gabay and G. Toulouse, Phys.Rev. Lett., 47 (1981) 201, and G. Toulouse and M. Gabay, J.Physique Lett. 42 (1981) L 103, and G. Toulouse and M. Gabay, T.C. Lubensky and J. Vannimenus, J.Physique Lett. 43 (1982) L109.Google Scholar
  4. 4.
    J. Villain, Z.Phys. B33 (1979) 31.Google Scholar
  5. 5.
    R.A. Brand, H. Georges-Gibert and C. Kovacic, J.Appl.Phys. 51 (1980) 2647 and R.A. Brand, H. Georges-Gibert and C. Kovacic, J.Appl.Phys. 51 (1980) 2647Google Scholar
  6. 6.
    P. Gütlich, R. Link and A. Trautwein, “Mössbauer Spectroscopy and Transition Metal Chemistry” (Springer Verlag 1978), and R.W. Grant in “Mössbauer Spectroscopy”, U. Gonser, ed. (Springer Verlag 1975).Google Scholar
  7. 7.
    P. Panissod, J. Durand and J.I. Budnick, Nucl.Instr.Meth. 199 (1982) 99.Google Scholar
  8. 8.
    R.E. Walstedt and L.R. Walker, J.Appl.Phys. 53 (1982) 7985.Google Scholar
  9. 9.
    R.A. Brand, J. Lauer and D.M. Herlach, J.Phys. F: Met.Phys. 13 (1983) 675.Google Scholar
  10. 10.
    B. Window, J.Phys. E.: Sci.Instr. 4 (1971) 401.Google Scholar
  11. 11.
    J.M. Dubois and G. LeCaér, Second Internat. Conf: Struct. of Non-Crystalline Materials. (1982) (in press), and G. LeCaér, private communication.Google Scholar
  12. 12.
    J. Lauer and W. Keune, Phys.Rev.Lett. 48 (1982) 1850.Google Scholar
  13. 13.
    J.A. Geohegan and S.M. Bhagat, J.Magn.Magn.Mater. 25 (1981) 17.Google Scholar
  14. 14.
    J. Durand, Rev.Phys.Appl. (Paris) 15 (1980) 1036.Google Scholar
  15. 15.
    F. Scholl and K. Binder, Z. Phys. B39 (1980) 239.Google Scholar
  16. 16.
    A. Herpin, “Théorie du Magnétism”, (Presses Universitaires de France. 1968), Ch. 19.Google Scholar
  17. 17.
    E. DeGrave, R. Vanleerberghe, C. Dauwe, J. de Sitter and A. Govaert, J.Physique C6-37 (1976) C6–97.Google Scholar
  18. 18.
    J. Hubsch, G. Gavoille and J. Bolfa, J.Appl.Phys. 49 (1978) 1363.Google Scholar
  19. 19.
    J. Hubsch, private communication.Google Scholar
  20. 20.
    F. Varret, A. Hamzié and I.A. Campbell, Phys.Rev. B26 (1982) 5195, and I.A. Campbell, S. Senoussi, F. Varret, J. Teillet, and A. Hamzié, Phys. Rev.Lett 50 (1983) 1615.Google Scholar
  21. 21.
    S. Crane and H. Claus, Phys.Rev.Lett 46 (1981) 1693.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • R. A. Brand
    • 1
  • V. Manns
    • 1
  • W. Keune
    • 1
  1. 1.Laboratorium für Angewandte PhysikUniversität DuisburgDuisburgGermany

Personalised recommendations