Advertisement

Experimental studies of the low-temperature properties of spin glasses

  • H. Alloul
Experimental Papers
Part of the Lecture Notes in Physics book series (LNP, volume 192)

Abstract

The recent experimental advances in the characterization of the low T properties of spin glasses are reviewed. A macroscopic anisotropy with a triadic character is found to characterize the spin glass state at low T, whatever its remanence O , and can be modified at will in RKKY spin glasses by addition of non magnetic impurities. The irreversible properties of spin glasses might be explained by successive jumps in phase space over energy barriers with a flat distribution of heights which are associated with the exchange couplings rather than the anisotropic interactions. Other marked differences with the case of fine magnetic grains,such as a single crossover,form non-ergodic to paramagnetic behavior and the probable occurrence of an equilibrium field cooled state,are stressed. The low-T specific heat and the correlated resistivity data in metallic spin glasses indicate the existence of a large density of magnon-like excitations,which have been simulated numerically. From zero field NMR experiments it can be seen that the local spin correlation functions do not markedly differ throughout the sample. The limited NMR and USR relaxation data available indicate that these local correlation functions have long time tails although it cannot be decided yet whether they correspond at low T to a 1/w or ωv−1 noise spectrum, with V<1.

Keywords

Spin System Spin Glass Rigid Rotation Anisotropy Energy Zero Field Cool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. (l).
    For recent review articles see A.Blandin,J.Phys.Colloq 39, 1499 (1978), R.Rammal and J.Souletie, Magnetism of metal and alloys, M.Cyrot Editor (North Holland 1982).p.379.Google Scholar
  2. (2).
    J.Mydosh, this conference.Google Scholar
  3. (3).
    P.Monod and H.Bouchiat, J.Physique Lettres 43, 45 (1982).Google Scholar
  4. (3) a.
    B.Barbara, A.P.Malozemoff and Y.Imry, Phys.Rev.Letters47, 1852 (1981).Google Scholar
  5. (3) b.
    A.Berton, J.Chaussy, J.Odin, R.Rammal and R.Tournier, J.Physique Lettres 43, 153 (1982).Google Scholar
  6. (4).
    For a recent review on the macroscopic anisotropy of spin glasses see H.Alloul and F.Hippert, J.Mag.Mag.Mat.31-34 1321 (1983).Google Scholar
  7. (5).
    See for instance R.A.Brand, V.Manns and W.Keune, this conference and H.Maletta this conference.Google Scholar
  8. (6).
    L.Néel,Ann.Geophys.5, 99 (1949).Google Scholar
  9. (7).
    J.S.Kouvel, J.Phys.Chem.Solids 21, 57 (1961).Google Scholar
  10. (8).
    H.Alloul, Phys.Rev.Letter 42, 603 (1979); J.Appl.Phys.50, 7330 (1979).Google Scholar
  11. (9).
    F.Hippert and H.Alloul, J.Physique. 43, 691 (1982).Google Scholar
  12. (10).
    P.Monod and Y.Berthier, J.Mag.Mag.Mat.15-18, 149 (1980)Google Scholar
  13. (11).
    A.Fert and F.Hippert, Phys.Rev.Letters 49, 1508 (1982).Google Scholar
  14. (12).
    S.Schultz, E.M.Gullikson, D.R.Fredkin and M.Tovar, J.Appl.Phys. 52, 1776 (1981)Google Scholar
  15. (13).
    W.Saslow, Phys.Rev.Letters 48, 505 (1982).Google Scholar
  16. (14).
    F.Hippert, thése de doctorat es Sciences, Orsay 1983 (unpublished).Google Scholar
  17. (15).
    C.L.Henley, H.Sompolinsky and B.I.Halperin, Phys.Rev.B25 5849 (1982).Google Scholar
  18. (16).
    A.J.Leggett,private communication.Google Scholar
  19. (17).
    E.M.Gullikson, D.R.Fredkin and S.Schultz, Phys.Rev.Letters 50, 537 (1983).Google Scholar
  20. (18).
    F.Hippert, H.Alloul and A.Fert, J.Appl.Physics 53, 7702 (1983).Google Scholar
  21. (19).
    J.J.Préjean, M.J.Joliclerc and P.Monod, J.Physique 41, 427 (1980)Google Scholar
  22. (20).
    A.Fert and P.Levy, Phys.Rev.B23, 4667 (1981).Google Scholar
  23. (21).
    E.Velu, J.P.Renard and J.P.Miranday, J.Physique Lettres 42, 237 (1981).Google Scholar
  24. (22).
    P.Monod,J.J.Préjean and B.Tissier, J.Appl.Phys.50, 7324 (1979).Google Scholar
  25. (23).
    F.Holtzberg, J.L.Tholence and R.Tournier, in Amorphous Magnetism II,Edit. R.A.Levy and R.Hasegawa (Plenum New York 1977) p 155Google Scholar
  26. (24).
    J.J.Préjean and J.Souletie, J.Physique 41, 1335 (1980).Google Scholar
  27. (25).
    J.Souletie, J.Physique 44, (1983).Google Scholar
  28. (26).
    A.Berton, J.Chaussy, J.Odin, R.Ramual, J.Souletie and R.Tournier, J.Physique Lettres 40, 931 (1979).Google Scholar
  29. (27).
    S.Senoussi, J.Phys.F 10, 2491 (1980).Google Scholar
  30. (28).
    E.P.Wohlfarth, J.Phys.F 10, L241 (1980).Google Scholar
  31. (29).
    C.A.M.Mulder, A.J.Van Duynevelt and J.A.Mydosh, Phys.Rev.B25, 515 (1982).Google Scholar
  32. (30).
    J.L.Tholence, Solid State Commun.35, 113 (1980).Google Scholar
  33. (31).
    G.J.Nieuwenhuys and J.A.Mydosh, Physica 86-88b, 880 (1977).Google Scholar
  34. (32).
    J.Odin, Thése de doctorat es Sciences, Grenoble (1982).Google Scholar
  35. (33).
    L.Lundgren, P.Svedlindh and O.Beckman, Phys.Rev.B26 3990 (1982).Google Scholar
  36. (34).
    K.Binder and W.Kinzel, Proceedings of this conference.Google Scholar
  37. (35).
    R.E.Walstedt, Proceedings of this conference.Google Scholar
  38. (36).
    L.E.Wenger and P.M.Keesom, Phys.Rev.B11, 3497 (1975).Google Scholar
  39. (37).
    L.R.Walker and R.E.Walstedt, Phys.Rev.B22 4503 (1980).Google Scholar
  40. (38).
    I.A.Campbell, Phys.Rev.Letters 47, 1473 (1981).Google Scholar
  41. (39).
    P.J.Ford and J.A.Mydosh, Phys.Rev.B14, 2057 (1976).Google Scholar
  42. (40).
    D.L.Martin, Phys.Rev.B21, 1906 (1980).Google Scholar
  43. (41).
    R.Caudron, P.Costa, J.C.Lasjaunias and B.Levesque, J.Phys.F.11, 451 (1981).Google Scholar
  44. (42).
    P.W.Anderson, B.I.Halperin and C.M.Varma, Phil.Mag. 125, 1 (1972).Google Scholar
  45. (43).
    A.P.Murani, Phys.Rev.B 28, 432 (1983).Google Scholar
  46. (44).
    B.Hennion, M.Hennion, F.Hippert and A.P.Murani, to be published in Phys.Rev.B (rapid communications).Google Scholar
  47. (45).
    F.Mezei and A.P.Murani, J.Magn.Magn.Mat.14, 211 (1979).Google Scholar
  48. (46).
    H.Alloul, S.Murayama and M.Chapellier, J.Magn.Magn.Mat.31-34, 1353 (1983).Google Scholar
  49. (47).
    J.Cowen and P.Monod, private communication.Google Scholar
  50. (48).
    D.E.Mac Laughlin, L.C.Gupta, D.W.Cooke, R.M.Heffner, M.Léon and M.E.Schillaci Phys.Rev.Letter 51, 927 (1983).Google Scholar
  51. (49).
    D.E.Mac Laughlin and H.Alloul, Phys.Rev.Letters 36, 1158 (1976) and 38, 181(1977)Google Scholar
  52. (49) a.
    D.A.Levitt and R.E.Walstedt, Phys.Rev.Letters 38, 177 (1977).Google Scholar
  53. (50).
    E.Marinari, G.Paladin, G.Parisi and A.Vulpiani ( to be published).Google Scholar
  54. (51).
    H.Sompolinsky and A.Zippelius, Phys.Rev.B25, 6860 (1982).Google Scholar
  55. (52).
    A.J.Bray and M.A.Moore, J.Phys.C.15 2417 (1982).Google Scholar
  56. (53).
    I.A.Campbell, D.Arvanitis and A.Fert, Phys. Rev. Letters 51, 57 (1983).Google Scholar
  57. (54).
    C.Henley, to be published.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • H. Alloul
    • 1
  1. 1.Laboratoire de Physique des SolidesUniversité de Paris SudOrsayFrance

Personalised recommendations