Multi polynomial remainder sequence and its application to linear diophantine equations

  • Akio Furukawa
  • Tateaki Sasaki
Algorithms 1 — Miscellaneous
Part of the Lecture Notes in Computer Science book series (LNCS, volume 162)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W. Habicht, Eine Verallgemeinerung des Sturmschen Wurzelzählverfahrens, Comm. Math. Helvetici 21, pp.99–116 (1948).Google Scholar
  2. [2]
    G. E. Collins, Polynomial remainder sequences and determinants, Amer. Math. Mon. 73, No.7, pp.708–712 (1966).Google Scholar
  3. [3]
    G. E. Collins, Subresultants and reduced polynomial remainder sequences, J. ACM 14, No.1, pp.128–142 (1967).Google Scholar
  4. [4]
    W. S. Brown and J. F. Traub, On Euclid's algorithm and the theory of subresultants, J. ACM 18, No.4, pp.505–514 (1971).Google Scholar
  5. [5]
    W. S. Brown, The subresultant PRS algorithm, ACM Trans. Math. Soft. 4, No.3, pp.237–249 (1978).Google Scholar
  6. [6]
    R. Loss, Generalized polynomial remainder sequences, Computing Suppl. 4, "Computer Algebra," eds. B. Buchberger, G. E. Collins and R. Loos, pp.115–137, Springer-Verlag, 1982.Google Scholar
  7. [7]
    T. Sasaki and A. Furukawa, Theory of multi-polynomial remainder sequence, preprint of IPCR, November 1982 (submitted for publication).Google Scholar
  8. [8]
    T. Sasaki and A. Furukawa, Secondary-polynomial remainder sequence and an extension of subresultant theory, preprint of IPCR, May 1982 (submitted for publication).Google Scholar
  9. [9]
    T. Sasaki, Extended Euclidean algorithm and determinants, preprint of IPCR, April 1982 (submitted for publication).Google Scholar
  10. [10]
    A. Furukawa, Algebraic methods for linear Diophantine equations and theory of secondary-polynomial remainder sequence (in Japanese), Master Thesis, Tokyo Metropolitan Univ, March 1982.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Akio Furukawa
    • 1
  • Tateaki Sasaki
    • 2
  1. 1.Department of MathematicsTokyo Metropolitan UniversityTokyoJapan
  2. 2.The Institute of Physical and Chemical ResearchSaitamaJapan

Personalised recommendations