Advertisement

Multi polynomial remainder sequence and its application to linear diophantine equations

  • Akio Furukawa
  • Tateaki Sasaki
Algorithms 1 — Miscellaneous
Part of the Lecture Notes in Computer Science book series (LNCS, volume 162)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Habicht, Eine Verallgemeinerung des Sturmschen Wurzelzählverfahrens, Comm. Math. Helvetici 21, pp.99–116 (1948).Google Scholar
  2. [2]
    G. E. Collins, Polynomial remainder sequences and determinants, Amer. Math. Mon. 73, No.7, pp.708–712 (1966).Google Scholar
  3. [3]
    G. E. Collins, Subresultants and reduced polynomial remainder sequences, J. ACM 14, No.1, pp.128–142 (1967).Google Scholar
  4. [4]
    W. S. Brown and J. F. Traub, On Euclid's algorithm and the theory of subresultants, J. ACM 18, No.4, pp.505–514 (1971).Google Scholar
  5. [5]
    W. S. Brown, The subresultant PRS algorithm, ACM Trans. Math. Soft. 4, No.3, pp.237–249 (1978).Google Scholar
  6. [6]
    R. Loss, Generalized polynomial remainder sequences, Computing Suppl. 4, "Computer Algebra," eds. B. Buchberger, G. E. Collins and R. Loos, pp.115–137, Springer-Verlag, 1982.Google Scholar
  7. [7]
    T. Sasaki and A. Furukawa, Theory of multi-polynomial remainder sequence, preprint of IPCR, November 1982 (submitted for publication).Google Scholar
  8. [8]
    T. Sasaki and A. Furukawa, Secondary-polynomial remainder sequence and an extension of subresultant theory, preprint of IPCR, May 1982 (submitted for publication).Google Scholar
  9. [9]
    T. Sasaki, Extended Euclidean algorithm and determinants, preprint of IPCR, April 1982 (submitted for publication).Google Scholar
  10. [10]
    A. Furukawa, Algebraic methods for linear Diophantine equations and theory of secondary-polynomial remainder sequence (in Japanese), Master Thesis, Tokyo Metropolitan Univ, March 1982.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Akio Furukawa
    • 1
  • Tateaki Sasaki
    • 2
  1. 1.Department of MathematicsTokyo Metropolitan UniversityTokyoJapan
  2. 2.The Institute of Physical and Chemical ResearchSaitamaJapan

Personalised recommendations