Factorisation of sparse polynomials

  • J. H. Davenport
Alsorithms 4 — Factorization
Part of the Lecture Notes in Computer Science book series (LNCS, volume 162)


Sparse polynomials xn±1 are often treated specially by the factorisation programs of computer algebra systems. We look at this, and ask how far this can be generalised. The answer is that more can be done for general binomials than is usually done, and recourse to a general purpose factoriser can be limited to "small" problems, but that general trinomials and denser polynomials seem to be a lost cause. We are concerned largely with the factorisation of univariate polynomials over the integers, being the simplest case.


Computer Algebra System Irreducible Polynomial Irreducible Factor Univariate Polynomial Factorise Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aho, Hopcroft & Ullman,1974.
    Aho, A.V., Hopcroft,J.E. & Ullman,J.D., The Design and Analysis of Computer Algorithms, Addison-Wesley, 1974.Google Scholar
  2. Bogen et al.,1977
    Bogen,R.A. et al., MACSYMA Reference Manual (version 9), M.I.T Laboratory for Computer Science, 1977.Google Scholar
  3. Bremner,1981.
    Bremner, A., On Reducibility of Trinomials. Glasgow Math. J., 22(1981), pp. 155–156. Zbl. 464.12001. MR 82i:10079.Google Scholar
  4. Capelli,1898.
    Capelli, A., Sulla Riduttibilità delle equazioni algebriche. Nota secunda. Rend. Accad. Sc. Fis. Mat. Soc. Napoli, Ser. 3, 4(1898), pp. 84–90.Google Scholar
  5. Caviness,1975.
    Caviness, B.F., More on Computing Roots of Integers. SIGSAM Bulletin 9(1975) 3, pp. 18–20, 29.Google Scholar
  6. Davenport, Lewis & Schinzel,1961.
    Davenport, H., Lewis, D.J. & Schinzel, A., Equations of the form f(x)=g(y). Quart. J. Math (Oxford) (2) 12(1961) pp. 102–104. H. Davenport, Collected Papers, Academic Press, 1977, Vol. IV, pp. 1711–1719.Google Scholar
  7. Fried,1973.
    Fried, M., The Field of Definition of Function Fields and a Problem in the Reducibility of Polynomials in Two Variables. Illinois J. Math. 17(1973) pp. 128–146.Google Scholar
  8. Hearn,1973.
    Hearn,A.C., REDUCE-2 User's Manual. Report UCP-19, University of Utah, 1973.Google Scholar
  9. Knuth,1981.
    Knuth,D.E., The Art of Computer Programming, vol. II, Seminumerical Algorithms (2nd. ed.). Addison-Wesley, 1981.Google Scholar
  10. Lang,1970.
    Lang,S., Algebraic Number Theory. Addison-Wesley,1970.Google Scholar
  11. Lenstra et al., 1982
    Lenstra,A.K., Lenstra,H.W.,Jr. & Lovász,L., Factoring Polynomials with Rational Coefficients. Preprint IW 195/82, Afdeling Informatica. Mathematisch Centrum, Amsterdam.Google Scholar
  12. Ljunggren,1960.
    Ljunggren, W., On the Irreducibility of Certain Trinomials and Quadrinomials. Math. Scand 8(1960) pp. 65–70.Google Scholar
  13. Mikusiński & Schinzel,1964.
    Mikusiński, J. & Schinzel, A., Sur la réductibilité de certains trinômes. Acta Arithmetica 9(1964) pp 91–95.Google Scholar
  14. Moore & Norman,1981.
    Moore, P.M.A. & Norman, A.C., Implementing a Polynomial Factorization and GCD Package. Proc. SYMSAC 81, ACM, New York, 1981, pp. 109–116.Google Scholar
  15. Schinzel,1962.
    Schinzel, A., Solution d'un problème de K. Zarankiewicz sur les suites de puissances consécutives de nombres irrationnels. Colloq. Math. 9(1962), pp. 291–296.Google Scholar
  16. Schinzel,1963.
    Schinzel, A., Some Unsolved Problems on Polynomials. Matematicka Biblioteka 25(1963) pp. 63–70.Google Scholar
  17. Schinzel, 1973.
    Schinzel, A., A General Irreducibility Criterion. J. Indian Math. Soc. (N.S.) 37(1973) pp. 1–8.Google Scholar
  18. Schinzel, 1978.
    Schinzel, A., Reducibility of lacunary polynomials III. Acta Arithmetica 34(1978) pp. 227–266.Google Scholar
  19. Schinzel,1982.
    Schinzel, A., Selected Topics on Polynomials. University of Michigan Press, Ann Arbor, Michigan, 1982.Google Scholar
  20. Schinzel,1983.
    Schinzel,A., Private Communication.Google Scholar
  21. Schnorr,1981.
    Schnorr,C.P., Refined Analysis and Improvement On Some Factoring Algorithms. Proc. 8th. Colloquium on Automata, Languages and Programming (Springer Lecture Notes in Computer Science 115, 1981), pp. 1–15. Zbl. 469.68043.Google Scholar
  22. Tverberg,1960.
    Tverberg, H., On the Irreducibility of the Trinomials xn±xm±1. Math. Scand. 8(1960) pp. 121–126.Google Scholar
  23. van der Waerden,1949.
    van der Waerden, B.L., Modern Algebra, vol. I. Ungar, New York, 1949 (trans. from Moderne Algebra, 2nd. ed., Springer, 1937)Google Scholar
  24. Vaughan,1974.
    Vaughan, R.C., Bounds for the Coefficients of Cyclotomic Polynomials. Michigan Math. J. 21(1974), pp. 289–295.Google Scholar
  25. Wang,1978.
    Wang, P.S., An Improved Multivariable Polynomial Factorising Algorithm. Math. Comp. 32(1978) pp. 1215–1231. Zbl. 383.10035.Google Scholar
  26. Zippel,1981.
    Zippel, R.E., Newton's Iteration and the Sparse Hensel Algorithm. Proc. SYMSAC 81, ACM, New York, 1981, pp. 68–72.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • J. H. Davenport
    • 1
  1. 1.Equipe d'Analyse NumériqueLaboratoire I.M.A.G.Saint Martin d'HèresFrance

Personalised recommendations