The computation of the Hilbert function

  • Ferdinando Mora
  • H. Michael Möller
Algorithms 2 — Polynomial Ideal Bases
Part of the Lecture Notes in Computer Science book series (LNCS, volume 162)


Abelian Subgroup Homogeneous Element Hilbert Function Monomial Ideal Free Resolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. Buchberger, Ph. D. Thesis, Univ. Innsbruck, 1965.Google Scholar
  2. [2]
    B. Buchberger, A criterion for detecting unnecessary reductions in the construction of Gröbner-bases, Springer LN in Comp. Sci. Nr. 72, 1979, 3–21.Google Scholar
  3. [3]
    W. Gröbner, Moderne algebraische Geometrie, Springer-Verlag, Wien-Innsbruck 1949.Google Scholar
  4. [4]
    W. Gröbner, Algebraische Geometrie, Bibliographisches Insitut Mannheim, vol I 1968, vol II 1970.Google Scholar
  5. [5]
    F.S. Macaulay, Some properties of enumeration in the theory of modular systems, Proc. London Math. Soc. 26, 1927, 531–555.Google Scholar
  6. [6]
    H.M. Möller, Mehrdimensionale Hermite-Interpolation und numerische Integration, Math. Z. 148, 1976, 107–118.Google Scholar
  7. [7]
    H.M. Möller and F. Mora, New constructive methods in classical ideal theory, submitted for publication.Google Scholar
  8. [8]
    B. Renschuch, Elementare und praktische Idealtheorie, Deutscher Verlag der Wissenschaften, Berlin 1976.Google Scholar
  9. [9]
    R.P. Stanley, Hilbert functions of graded algebras, Advances in math. 28, 1978, 57–83.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Ferdinando Mora
    • 1
  • H. Michael Möller
    • 2
  1. 1.Istituto di MatematicaUniversitá di GenovaGenovaItaly
  2. 2.FB Mathematik und InformatikFernUniversität HagenHagen 1BRD

Personalised recommendations