Advertisement

Soluble synthetic polymers as potential drug carriers

  • Ruth Duncan
  • Jindřich Kopeček
Conference paper
Part of the Advances in Polymer Science book series (POLYMER, volume 57)

Abstract

Soluble synthetic polymers provide a potential targetable drug delivery system. In this article we discuss the consequences of the attachment of pharmaceuticals to macromolecular carriers with special reference to endocytosis and lysosomotropic drug delivery. The types of polymers which may be used as carriers are reviewed with particular regard to the methodology currently available in polymer chemistry for the synthesis of polymers bearing cell-specific targeting residues and incorporating effective polymer drug linkages. In order to be successful in drug delivery, the polymeric drug carrier must behave in a predictable and favourable manner in the biological environment. Studies concerned with the biological properties of synthetic polymers are also reviewed. The idea of using drug carriers to improve the therapeutic efficacy of pharmacological agents is receiving increasing attention, and the relationship between soluble synthetic polymers and other proposed carriers is discussed together with possible clinical applications.

Keywords

Drug Delivery System Molecular Weight Distribution Synthetic Polymer Drug Carrier Polymeric Carrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations

DIVEMA

Divinyl ether and maleic anhydride copolymer

DMSO

Dimethyl sulfoxide

DOPA

3,4-Dihydroxyphenylalanine

DSC

Differential scanning calorimetry

HMDA

Hexamethylenediamine

IME

2-Imino-2-methoxyethyl-1-thioglycoside

MTX

Methotrexate

NAp

p-Nitroaniline

PAH

Poly(acryl hydrazide)

PDM

p-Phenylenediamine mustard

PEG

Poly(ethylene glycol)

PEO

Poly(ethylene oxide)

PGA

Poly(glutamic acid)

poly(Lys)

Polylysine

poly(vA)

Polyvinyladenine

poly(vU)

Polyvinyluracil

PVP

Polyvinylpyrrolidone

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  1. 1.
    Donaruma, L. G., Vogl, O.: Polymeric Drugs, London, Academic Press Inc. 1978Google Scholar
  2. 2.
    Baker, R.: Controlled Release of Bioactive Materials, New York Academic Press Inc. 1980Google Scholar
  3. 3.
    Lewis, D. H.: Controlled Release of Pesticides and Pharmaceuticals, New York, Plenum Press 1981Google Scholar
  4. 4.
    Chang, T. M. S.: Biomedical Applications of Immobilized Enzymes and Proteins, Vols. 1 and 2, New York, Plenum Press 1977Google Scholar
  5. 5.
    Goldberg, E. P., Nakajima, A.: Biomedical Polymers, New York, Academic Press 1980Google Scholar
  6. 6.
    Gebelein, C. G., Koblitz, F. F.: Biomedical and Dental Applications of Polymers, Polymer Science and Technology Vol. 14, New York, Plenum Press 1981Google Scholar
  7. 7.
    Chiellini, E., Guisti, P.: Polymers in Medicine: Biomedical and Pharmacological Applications, Plenum Press 1983, in pressGoogle Scholar
  8. 8.
    Heller, J., Baker, R. W.: Theory and practice of controlled drug delivery from bioerodible polymers, in: Controlled Release of Bioactive Materials (ed.) Baker, R. W., p. 1, New York, Academic Press 1980Google Scholar
  9. 9.
    Ehrlich, P.: Studies in Immunity, New York, Wiley 1906Google Scholar
  10. 10.
    Ringsdorf, H.: J. Polym. Sci. Polym. Symp. 51, 135 (1975)Google Scholar
  11. 11.
    Pitha, J., Kusiak, J. W.,: Biological activities and targeting of soluble macromolecules, in: Controlled Release of Pesticides and Pharmaceuticals (ed.) Lewis, D. H., p. 67, New York, Plenum Press 1981Google Scholar
  12. 12.
    Allison, A. C., Davies, P.: Mechanisms of endocytosis and exocytosis, in: Transport at the Cellular Level, Society for Exp. Biol. Symp. xxviii, p. 419, Cambridge, Cambridge University Press 1974Google Scholar
  13. 13.
    Silverstein, S. C., Steinman, R. M., Cohn, Z. A.: Ann. Rev. Biochem. 46, 669 (1977)PubMedGoogle Scholar
  14. 14.
    Stossel, T. P.: Endocytosis, in: Receptors and Recognition, Series A, (eds.) Cuatrecasas, P., Greaves, M. F. Vol 4, p. 105, London, Chapman and Hall 1977Google Scholar
  15. 15.
    Griffin, F. M. et al.: J. Exp. Med. 142, 1263 (1975)Google Scholar
  16. 16.
    Lewis, W. H.: John Hopkins Hosp. Bull. 49, 17 (1931)Google Scholar
  17. 17.
    Schneider, Y.-J. et al.: J. Cell Biol. 82, 449 (1979)Google Scholar
  18. 18.
    Barrett, A. J., Heath, M. F.: Lysosomal enzymes, in: Lysosomes, a laboratory handbook (ed.) Dingle, J. T., p. 19, Amsterdam, Elsevier/North-Holland Biomedical Press 1977Google Scholar
  19. 19.
    Jacques, P.: Endocytosis, in: Lysosomes in Biology and Pathology, Vol. 2 (eds.) Dingle, J. T., Fell, H. B., p. 395, Amsterdam, North Holland Biomedical Press 1969Google Scholar
  20. 20.
    Neufeld, E. F., Ashwell, G.: Carbohydrate recognition systems for receptor-mediated pinocytosis, in: The Biochemistry of Glycoproteins and Proteoglycans (ed.) Lennarz, W. S., p. 241, New York, Plenum Press 1980Google Scholar
  21. 21.
    Goldstein, J. L., Brown, M. S.: Ann. Rev. Biochem. 46, 897 (1977)PubMedGoogle Scholar
  22. 22.
    De Duve, C. et al.: Biochem. Pharmacol. 23, 2495 (1974)PubMedGoogle Scholar
  23. 23.
    Reijngoud, D.-J., Tager, J. M.: Biochim. Biophys. Acta 472, 419 (1977)Google Scholar
  24. 24.
    Lloyd, J. B.: Experimental support for the concept of lysosomal storage diseases, in: Lysosomes and Storage Diseases (eds.) Hers, H. G., Van Hoof, F., p. 173, New York and London, Academic Press 1973Google Scholar
  25. 25.
    Docherty, K. et al.: Biochem. J. 178, 361 (1979)Google Scholar
  26. 26.
    Kopeček, J.: Soluble polymers in medicine, in: Systemic Aspects of Biocompatibility (ed.) Williams, D. F., p. 159, Boca Raton, Florida, CRC Press 1981Google Scholar
  27. 27.
    Zaharko, D. S., Przybylski, M., Oliverio, V. T.: Meth. Canc. Res. 16, 347 (1979)Google Scholar
  28. 28.
    Šprincl, L. et al.: J. Biomed. Mater. Res. 10, 953 (1976)Google Scholar
  29. 29.
    Duncan, R. et al.: Biochem. J. 196, 49 (1981)Google Scholar
  30. 30.
    Cartlidge, S. A. et al.: in preparationGoogle Scholar
  31. 31.
    Cowie, J. M. G.: Polymers: Chemistry and Physics of Modern Materials, Aylesbury, UK, Int. Textbook Co. 1973Google Scholar
  32. 32.
    Kopeček, J., Ulbrich, K.: Progr. Polym. Sci., 9, 1 (1983)Google Scholar
  33. 33.
    Kopeček, J., Rejmanová, P.: Enzymatically degradable bonds in synthetic polymers, in: Controlled Drug Delivery (ed.) Bruck, S. D., p. 81, Boca Raton, Florida, CRC Press 1983Google Scholar
  34. 34.
    Kopeček, J.: Makromol. Chem. 178, 2169 (1977)Google Scholar
  35. 35.
    Kopeček, J.: Biodegradation of polymers for biomedical use, in: IUPAC Macromolecules (ed.) Benoit, H., Rempp, P., p. 305, Oxford, Pergamon Press 1982Google Scholar
  36. 36.
    Rejmanová, P., Obereigner, B., Kopeček, J.: Makromol. Chem. 182, 1899 (1981)Google Scholar
  37. 37.
    Sekiguchi, H.: Pure Appl. Chem. 53, 1689 (1981)Google Scholar
  38. 38.
    Vasiliev, A. E.: Medical polymers (in Russian), in: Itogi nauki i techniki 16, 3 (1981)Google Scholar
  39. 39.
    Gros, L., Ringsdorf, H., Schupp, H.: Angew. Chem. 93, 311 (1981)Google Scholar
  40. 40.
    Morawetz, H.: J. Polym. Sci., Polym. Symp. 62, 271 (1978)Google Scholar
  41. 41.
    Mikeš, F. et al.: Macromolecules 14, 175 (1981)Google Scholar
  42. 42.
    Kaplan, A. M.: Antitumor activity of synthetic polyanions, in: Anionic Polymeric Drugs (ed.) Donaruma, L. G., Ottenbrite, R. M., Vogl, O., p. 227, New York, J. Wiley 1980Google Scholar
  43. 43.
    Ottenbrite, R. M. et al.: Biological activity of poly (carboxylic acid) polymers, in: Polymeric Drugs (ed.) Donaruma, L. G., Vogl, O., p. 263, New York, Academic Press 1978Google Scholar
  44. 44.
    Hespe, W., Meier, A. M., Blankwater, Y. J.: Drug Res. 27, 1158 (1977)Google Scholar
  45. 45.
    Butler, G. B.: Synthesis, characterization, and biological activity of pyran copolymers, in: Anionic Polymeric Drugs (ed.) Donaruma, L. G., Ottenbrite, R. M., Vogl, O., p. 49, New York, J. Wiley 1980Google Scholar
  46. 46.
    Mück, K. F., Rolly, H., Burg, K.: Makromol. Chem. 178, 2773 (1977)Google Scholar
  47. 47.
    Mück, K. F., Christ, O., Kellner, H. M.: Makromol. Chem. 178, 2785 (1977)Google Scholar
  48. 48.
    Allcock, H. R. et al.: Macromolecules 10, 824 (1977)Google Scholar
  49. 49.
    Grolleman, C. W. J. et al.: Polyphosphazenes as a system for programmed drug release, in: Proceedings of the Int. Conf. Biomedical Polymers, p. 203, London, The Biological Engineering Society 1982Google Scholar
  50. 50.
    Kopeček, J., Šprincl, L., Lím, D.: J. Biomed. Mater. Res. 7, 179 (1973)Google Scholar
  51. 51.
    Hofmann, V., Ringsdorf, H., Muacevic, G.: Makromol. Chem. 176, 1929 (1975)Google Scholar
  52. 52.
    Carpino, L. A., Ringsdorf, H., Ritter, H.: Makromol. Chem. 177, 1631 (1976)Google Scholar
  53. 53.
    Neri, P. et al.: J. Med. Chem. 16, 893 (1973)Google Scholar
  54. 54.
    Antoni, G. et al.: Biopolymers 13, 1721 (1974)Google Scholar
  55. 55.
    Petersen, R. V. et al.: Biodegradable drug delivery systems based upon poly(L-glutamic acid) and poly(L-glutamines), in: Proceedings of the Int. Conf. Biomedical Polymers, p. 211, London, The Biological Engineering Society 1982Google Scholar
  56. 56.
    Pitha, J.: Polymeric drugs: Effects of polyvinyl analogs of nucleic acids on cells, animals and their viral infections, in: Biomedical and Dental Applications of Polymers (ed.) Gebelein, C. G. Koblitz, F. K., p. 203, New York, Plenum Press 1981Google Scholar
  57. 57.
    Takemoto, K.: Recent problems concerning functional monomers and polymers containing nucleic acid bases, in: Polymeric Drugs (ed.) Donaruma, L. G., Vogl, O., p. 103, London, Academic Press 1978Google Scholar
  58. 58.
    Ajisaka, K., Iwashita, Y.: Biochem. Biophys. Res. Commun. 97, 1076 (1980)Google Scholar
  59. 59.
    Franzmann, G., Ringsdorf, H.: Makromol. Chem. 177, 2547 (1976)Google Scholar
  60. 60.
    Ferrutti, P.: Il Farmaco, Ed. Sci. 32, 220 (1977)Google Scholar
  61. 61.
    Hörpel, G. et al.: Micellforming co-and blockcopolymers for sustained drug release, in: Proceedings of the 28th IUPAC Macromolecular Symposium, p. 346, Amherst, Ma. 1982Google Scholar
  62. 62.
    Duncan, R., et a.: Biochim. Biophys. Acta 717, 248 (1982)Google Scholar
  63. 63.
    Duncan, R., et al.: unpublished resultsGoogle Scholar
  64. 64.
    Hofmann, V., Ringsdorf, H., Schaumlöffel, E.: Makromol. Chem. 181, 351 (1980)Google Scholar
  65. 65.
    Fuller, W. D., Verlander, M. S., Goodman, M.: Biopolymers 17, 2939 (1978)Google Scholar
  66. 66.
    Pitha, J. et al.: Makromol. Chem. 182, 1945 (1981)Google Scholar
  67. 67.
    Carraher, C. E.: Organometallic polymers as drugs and drug delivery systems, in: Biomedical and Dental Applications of Polymers (ed.) Gebelein, C. G., Koblitz, F. K., p. 215, New York, Plenum Press 1981Google Scholar
  68. 68.
    Carraher, C. E. et al.: J. Macromol. Sci. Chem. A 15, 625 (1981)Google Scholar
  69. 69.
    Carraher, C. E., Moon, W. G., Langworthy, T. A.: Polymer Preprints p. 1, ACS Spring Meeting 1976Google Scholar
  70. 70.
    Molz, P.: Synthese und Untersuchung von potentiell spaltbaren Spacergruppen zur Polymerfixierung von NOR-Stickstoff-LOST und den Anthracyclinen Daunomycin und Adriamycin, Ph. D. Thesis, Johannes Guttenberg University Mainz, FRG 1982Google Scholar
  71. 71.
    Morawetz, H.: Macromolecules in Solution, New York, Interscience Publishers 1975Google Scholar
  72. 72.
    Shen, W. C., Ryser, H. J. P.: Biochem. Biophys. Res. Commun. 102, 1048 (1981)Google Scholar
  73. 73.
    Kopeček, J., Rejmanová, P., Chytrý, V.: Makromol. Chem. 182, 799 (1981)Google Scholar
  74. 74.
    Duncan, R. et al.: Bioscience Reports, 2, 1041 (1982)Google Scholar
  75. 75.
    Rejmanová et al.: Makromol. Chem., 184, 000 (1983) No. 10 — OctoberGoogle Scholar
  76. 76.
    Baurain, R. et al.: Antitumoral activity of daunorubicin linked to proteins. II. Lysosomal hydrolysis and antitumoral activity of conjugates prepared with peptidic spacer arms, in: Proceecings of the 12th Congress of Chemotherapy, Florence 1981Google Scholar
  77. 77.
    Duncan, R., Kopeček, J., Lloyd, J. B.: Development of N-(2-hydroxypropyl)methacrylamide copolymers as carriers of therapeutic agents, in: Polymers in Medicine: Biomedical and Pharmacological Applications (eds.) Chiellini, E., Giusti, P., New York, Plenum Press 1983Google Scholar
  78. 78.
    Duncan, R. et al.: Biochim. Biophys. Acta 678, 143 (1981)Google Scholar
  79. 79.
    Rejmanová, P. et al.: unpublished resultsGoogle Scholar
  80. 80.
    Molz, P. et al.: Int. J. Biol. Macromol. 2, 245 (1980)Google Scholar
  81. 81.
    Hofmann, V. et al.: Makromol. Chem. 180, 837 (1979)Google Scholar
  82. 82.
    Obereigner, B. et al.: J. Polym. Sci. Polym. Symp. 66, 41 (1979)Google Scholar
  83. 83.
    Sheehan, J. C., Hess, G. P.: J. Am. Chem. Soc. 77, 1067 (1955)Google Scholar
  84. 84.
    Wieland, T., Kern, W., Sehring, R.: Ann. Chem. 569, 117 (1950)Google Scholar
  85. 85.
    Przybylski, M. et al.: Makromol. Chem. 179, 1719 (1978)Google Scholar
  86. 86.
    Rejmanová, P., Labský, J., Kopeček, J.: Makromol. Chem. 178, 2159 (1977)Google Scholar
  87. 87.
    Říhová, B. et al.: Biomaterials in press 184, 1345 (1983)Google Scholar
  88. 88.
    Pitha, J., Zawadski, S., Hughes, B. A.: Makromol. Chem. 183, 781 (1982)Google Scholar
  89. 89.
    Chytrý, V., Kopeček, J.: Makromol. Chem., 184, 1345 (1983)Google Scholar
  90. 90.
    Hirano, T., Klesse, W., Ringsdorf, H.: Makromol. Chem. 180, 1125 (1979)Google Scholar
  91. 91.
    Lääne, A. et al.: Collect. Czech. Chem. Commun. 46, 1466 (1981)Google Scholar
  92. 92.
    Joost, H. G., Hasselblatt, A.: Naunyn-Schmiedeberg's Arch. Pharmacol. 297, 81 (1977)Google Scholar
  93. 93.
    Trouet, A.: Europ. J. Cancer 14, 105 (1978)Google Scholar
  94. 94.
    Lee, Y. C., Stowell, C. P., Krantz, M. J.: Biochemistry 15, 3956 (1976)Google Scholar
  95. 95.
    Lee, R. T., Lee, Y. C.: Biochemistry 19, 156 (1980)Google Scholar
  96. 96.
    Kawaguchi, K. et al.: J. Biol. Chem. 256, 2230 (1981)Google Scholar
  97. 97.
    Kawaguchi, K. et al.: Arch. Biochem. Biophys. 205, 388 (1980)Google Scholar
  98. 98.
    Duncan, R. et al.: Biochim. Biophys. Acta 755, 518 (1983)Google Scholar
  99. 99.
    Hurwitz E. et al.: Cancer Res. 35, 1175 (1975)Google Scholar
  100. 100.
    Davies, D. A. L., O'Neill, G. J.: Proc. XI. Int. Cancer Cong. 1, 218 (1974)Google Scholar
  101. 101.
    Rowland, G. F.: Eur. J. Cancer 13, 593 (1977)Google Scholar
  102. 102.
    Wilchek, M.: Makromol. Chem. Suppl. 2, 207 (1979)Google Scholar
  103. 103.
    O'Neill, G. J.: The use of antibodies as drug carriers, in: Drug Carriers in Biology and Medicine (ed.) Gregoriadis, G., p. 23, London, Academic Press 1979Google Scholar
  104. 104.
    Říhová, B., Kopeček, J.: unpublished resultsGoogle Scholar
  105. 105.
    Winter, G. D., Leray, J. L., De Grost, K.: Evaluation of Biomaterials, Chichester-New York-Brisbane-Toronto, John Wiley & Sons 1980Google Scholar
  106. 106.
    Munton, C. G. F. et al.: Br. J. Ophtal. 58, 941 (1974)Google Scholar
  107. 107.
    Vert, M. et al.: Makromol. Chem., Suppl. 5, 284 (1981)Google Scholar
  108. 108.
    Duncan, R., Lloyd, J. B., Kopeček, J.: Biochem. Biophys. Res. Commun. 94, 284 (1980)Google Scholar
  109. 109.
    Duncan, R. et al.: Cell Biol. Int. Reports 5 (Suppl. A.), 14 (1981)Google Scholar
  110. 110.
    Hirano, T., Ringsdorf, H., Zaharko, D. S.: Cancer Res. 40, 2263 (1980)Google Scholar
  111. 111.
    Drobník et al. Makromol. Chem. 177, 2833 (1976)Google Scholar
  112. 112.
    Fu, T.-Y., Morawetz, H.: J. Biol. Chem. 251, 2083 (1976)Google Scholar
  113. 113.
    Drobník, J. et al.: J. Polym. Sci. Polym. Symp. 66, 65 (1979)Google Scholar
  114. 114.
    Verlander, M. et al.: Some novel approaches to the design and synthesis of peptide-catecholamine conjugates in: Polymers in Medicine: Biomedical and Pharmacological Applications (eds.) Chiellini, E., Guisti, P., Plenum Press, 1983 in pressGoogle Scholar
  115. 115.
    Ryser, H. J.-P., Shen, W.-C.: Proc. Natl. Acad. Sci. USA 75, 3867 (1978)Google Scholar
  116. 116.
    Shen, W.-C., Ryser, H. J.-P.: Mol. Pharmacol. 16, 614 (1979)Google Scholar
  117. 117.
    Shen, W.-C., Ryser, H. J.-P.: Fed. Proc. 40, 642 (1981)Google Scholar
  118. 118.
    Chu, B. C. F., Howell, S. B.: J. of Pharm. Exp. Thera. 219, 389 (1981)Google Scholar
  119. 119.
    Van Heeswijk, W. A. R. et al.: Synthesis and characterisation of a macromolecular prodrug of the antitumor antibiotic adriamycin, in: Proceedings of International Symposium on Polymers in Medicine, Porto Cervo, Sardinia, p. 23, 1982Google Scholar
  120. 120.
    Ferruti, P. et al.: Polymeric derivatives of daunorubicin as drug delivery systems in antitumor chemotherapy, in: Proceedings of the International Symposium on Polymers in Medicine, Port Cervo, Sardinia 1982Google Scholar
  121. 121.
    Williams, K. E. et al.: J. Cell Biol. 64, 123 (1975)Google Scholar
  122. 122.
    Pratten, M. K., Williams, K. E., Lloyd, J. B.: Biochem. J. 168, 365 (1977)Google Scholar
  123. 123.
    Leake, D. S., Bowyer, D. E.: Biochem. Soc. Trans. 5, 130 (1977)Google Scholar
  124. 124.
    Bridges, J. F., Woodley, J. F. in: Maternofoetal transmission, Vol. 2, (ed.) Hemming, W., p. 249, Amsterdam, Elsevier 1979Google Scholar
  125. 125.
    Rowland, R. N., Woodley, J. F.: Bioscience Reps. 1, 399 (1981)Google Scholar
  126. 126.
    Breslow, D. S.: Pure Appl. Chem. 46, 103 (1976)Google Scholar
  127. 127.
    Pratten, M. K. et al.: Chem.-Biol. Interactions 35, 319 (1981)Google Scholar
  128. 128.
    Papamatheakis et al.: Cancer Treat. Rep. 62, 1845 (1978)Google Scholar
  129. 129.
    Seljelid, R., Silverstein, S. C., Cohn, Z. A.: J. Cell Biol. 57, 484 (1973)Google Scholar
  130. 130.
    Ryser, H. J.-P.: Nature 215, 934 (1967)Google Scholar
  131. 131.
    Ryser, H. J.-P., Shen, W.-C., Merk, F. B.: Life Sciences 22, 1253 (1978)Google Scholar
  132. 132.
    Pratten, M. K., unpublished resultsGoogle Scholar
  133. 133.
    Chu, B. C. F., Howell, S. B.: Biochem. Pharmacol. 30, 2545 (1981)Google Scholar
  134. 134.
    Noronha-Blob, L. et al.: J. Med. Chem. 20, 356 (1977)Google Scholar
  135. 135.
    Tirrell, D. A., Boyd, P. M.: Makromol. Chem. Rapid Commun. 2, 193 (1981)Google Scholar
  136. 136.
    Pratten, M. K. et al.: Biochim. Biophys. Acta 719, 424 (1982)Google Scholar
  137. 137.
    Cartlidge, S. A. et al., in: Proceedings of the Int. Conf. Biomedical Polymers, p. 289, London, The Biological Engineering Society 1982Google Scholar
  138. 138.
    Fornůsek, L., Větvička, V., Kopeček, J.: Experientia 37, 418 (1981)Google Scholar
  139. 139.
    Ravin, H. A., Seligman, A. M., Fine, J.: New England J. Med. 247, 921 (1952)Google Scholar
  140. 140.
    Regoeczi, E.: Br. J. exp. Path. 57, 431 (1976)Google Scholar
  141. 141.
    Munniksma, J. et al.: Biochem. J. 192, 613 (1980)Google Scholar
  142. 142.
    Ashwell, G., Morell, A. G.: Adv. Enzymol. 41, 99 (1974)PubMedGoogle Scholar
  143. 143.
    Stahl, P. D. et al.: Proc. Natl. Acad. Sci. 75, 1399 (1978)Google Scholar
  144. 144.
    Achord, D. T. et al.: Cell 15, 269 (1978)PubMedGoogle Scholar
  145. 145.
    Kaplan, A. et al.: J. Clin. Invest. 60, 1088 (1977)Google Scholar
  146. 146.
    Abel, G. et al.: Makromol. Chem. 177, 2669 (1976)Google Scholar
  147. 147.
    Ohno, H., Abe, K., Tsuchida, E.: Makromol. Chem. 182, 1253 (1981)Google Scholar
  148. 148.
    Lenz, R. W., Guerin, P.: Functional polyesters and polyamides for medical applications of biodegradable polymers, in: Polymers in Medicine: Biomedical and Pharmacologial Applications (eds.) Chiellini, E., Guisti, P. Plenum Press 1983 in pressGoogle Scholar
  149. 149.
    Braswell et al.: The synthesis and titration of poly(amino acids), in: Proceedings of the International Symposium on Polymers in Medicine, Porto Cervo, Sardinia, p. 36, 1982Google Scholar
  150. 150.
    Kopeček, J. et al.: Makromol. Chem. 182, 2941 (1981)Google Scholar
  151. 151.
    Fauvarque, J. F., Malinge, J.: Synthesis of biodegradable hydrosoluble polymers, in: Proceedings of the International Symposium on Porto Cervo, Sardinia p. 41, 1982Google Scholar
  152. 152.
    Williams, D. F.: Introduction to the toxicology of polymer-based materials, in: Systemic Aspects of Biocompatibility (ed.) Williams, D. F. Vol. II, 51, Boca Raton, Florida, CRC Press 1981Google Scholar
  153. 153.
    Abuchowski, A. et al.: J. Biol. Chem. 252, 3578 (1977)Google Scholar
  154. 154.
    Savoca, K. V. et al.: Biochim. Biophys. Acta 578, 47 (1979)Google Scholar
  155. 155.
    Goldman, I. D.: Cancer Chemother. Rep. 6, 63 (1975)Google Scholar
  156. 156.
    Chu, B. C. F., Howell, S. B.: J. Pharm. Exp. Thera. 219, 389 (1981)Google Scholar
  157. 157.
    Fung et al.: J. Natl. Cancer Inst. 62, 1261 (1979)Google Scholar
  158. 158.
    Przybylski, M. et al.: Cancer Treatment Reps. 62, 1837 (1978)Google Scholar
  159. 159.
    Hörpel, G. et al.: Micelle-forming copolymers and block copolymers for sustained drug release, in: Proceeding of the International Symposium on Polymers in Medicine, Porto Cervo, Sardinia 1982Google Scholar
  160. 160.
    Hurwitz, E., Wilchck, M., Pitha, J.: J. Appl. Biochem. 2, 25 (1980)Google Scholar
  161. 161.
    Von Sprecht, B.-U., Seinfeld, H., Brendel, W.: Hoppe-Seyler's Z. Physiol. Chem. 354, 1659 (1973)Google Scholar
  162. 162.
    Hespe, W., Blankwater, Y. J., Wieriks, J.: Arzneim.-Forsch. 25, 1561 (1975)Google Scholar
  163. 163.
    Gregoriadis, G.: Drug Carriers in Biology and Medicine, London, Academic Press Inc. 1979Google Scholar
  164. 164.
    Knight, C. G.: Liposomes: From Physical Structure to Therapeutic Applications, Amsterdam, North-Holland Biomedical Press 1981Google Scholar
  165. 165.
    Nicholls, P.: Liposomes — as artifical organelles, topochemical matrices, and therapeutic carrier systems, in: Membrane Research, Classic Origins and Current Concepts (ed.) Muggleton Harris, A. L. p. 327, New York, Academic Press Inc. 1981Google Scholar
  166. 166.
    Kirby, C., Clarke, J., Gregoriadis, G.: Biochem. J. 186, 591 (1980)Google Scholar
  167. 167.
    Sunamoto, J. et al.: Improved drug delivery to target-specific organs using liposomes as coated with polysaccharide, in: Proceedings of the International Symposium on Polymers in Medicine, Porto Cervo, Sardinia, p. 3, 1982Google Scholar
  168. 168.
    Couvreur, P. et al.: Febs. Lett. 84, 323 (1977)Google Scholar
  169. 169.
    Poste, G., Fidler, I. J.: Therapeutic amplification of macrophage-mediated destruction of tumor cells, an approach to cancer chemotherapy that addresses the problem of tumor cell heterogeneity, in: Design of Models for Testing Cancer Therapeutic Agents (eds.) Fidler, I. J., White, R. J., p. 225, New York, Van Nostrand Reinhold 1982Google Scholar
  170. 170.
    Gregoriadis, G.: N. Engl. J. Med. 295, 704 (1976)Google Scholar
  171. 171.
    Gregoriadis, G. et al.: Lancet 1, 1313 (1974)Google Scholar
  172. 172.
    Tyrrell, D. A. et al.: Brit. Med. J. 2, 88 (1976)Google Scholar
  173. 173.
    Weismann, G. et al.: Ann. N. Y. Acad. Sci. 308, 235 (1978)Google Scholar
  174. 174.
    Mantovani, P., Pepeu, G., Amaducci, L.: Adv. Exp. Med. Biol. 72, 285 (1976)Google Scholar
  175. 175.
    Masturzo, P. et al.: New Engl. J. Med. 297, 338 (1977)Google Scholar
  176. 176.
    Zwall, R. F. A.: Biochim. Biophys. Acta 515, 163 (1978)Google Scholar
  177. 177.
    Allison, A. C., Gregoriadis, G.: Nature 252, 252 (1974)Google Scholar
  178. 178.
    Trouet, A. et al.: DNA, liposomes and proteins as carriers for antitumoral drugs, in: Recent Results in Cancer Research, Vol. 75 (eds.) Mathe, G., Muggia, F. M. p. 229, Berlin-Heidelberg, Springer-Verlag 1980Google Scholar
  179. 179.
    Trouet, A., Deprez-De Campeneere, D., De Duve, C.: Nature New Biol. 239, 110 (1972)Google Scholar
  180. 180.
    Trouet, A., Sokal, G.: Cancer Chemother. Rep. 63, 895 (1979)Google Scholar
  181. 181.
    Trouet, A. et al.: Proc. Natl. Acad. Sci. USA 79, 626 (1982)Google Scholar
  182. 182.
    Masquelier, M. et al.: Antitumoral activity of daunorubicin linked to proteins. I. Biological and antitumoral properties of peptidic derivatives of danorubicin used as intermediates, in: Proceedings of the 12th Congress of Chemotherapy, Florence 1981Google Scholar
  183. 183.
    Möller, G.: Antibody Carriers of Drugs and Toxins in Tumor Therapy Immunol. Rev. 62, Copenhagen, Munksgaard 1982Google Scholar
  184. 184.
    Newman, C. E. et al.: Lancet 1, 163 (1977)Google Scholar
  185. 185.
    Poznansky, M. J., Bhardwaj, D.: Can. J. Physiol. Pharmacol. 58, 322 (1980)Google Scholar
  186. 186.
    Poznansky, M. J., Bhardwaj, D.: Biochem. J. 196, 89 (1981)Google Scholar
  187. 187.
    Poznansky, M. et al.: Cancer Res. 42, 1020 (1982)Google Scholar
  188. 188.
    Alving, C. R. et al.: Science 205, 1142 (1979)Google Scholar
  189. 189.
    New, R. R. C. et al.: Nature 272, 55 (1978)Google Scholar
  190. 190.
    Gruenberg, J. et al.: Biochem. Biophys. Res. Commun. 88, 1173 (1979)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Ruth Duncan
    • 1
  • Jindřich Kopeček
    • 2
  1. 1.Biochemistry Research Laboratory, Department of Biological SciencesUniversity of KeeleKeeleU.K.
  2. 2.Institute of Macromolecular ChemistryCzechoslovak Academy of SciencesPrague 6Czechoslovakia

Personalised recommendations