Skip to main content

Soluble synthetic polymers as potential drug carriers

  • Conference paper
  • First Online:
Polymers in Medicine

Part of the book series: Advances in Polymer Science ((POLYMER,volume 57))

Abstract

Soluble synthetic polymers provide a potential targetable drug delivery system. In this article we discuss the consequences of the attachment of pharmaceuticals to macromolecular carriers with special reference to endocytosis and lysosomotropic drug delivery. The types of polymers which may be used as carriers are reviewed with particular regard to the methodology currently available in polymer chemistry for the synthesis of polymers bearing cell-specific targeting residues and incorporating effective polymer drug linkages. In order to be successful in drug delivery, the polymeric drug carrier must behave in a predictable and favourable manner in the biological environment. Studies concerned with the biological properties of synthetic polymers are also reviewed. The idea of using drug carriers to improve the therapeutic efficacy of pharmacological agents is receiving increasing attention, and the relationship between soluble synthetic polymers and other proposed carriers is discussed together with possible clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

DIVEMA:

Divinyl ether and maleic anhydride copolymer

DMSO:

Dimethyl sulfoxide

DOPA:

3,4-Dihydroxyphenylalanine

DSC:

Differential scanning calorimetry

HMDA:

Hexamethylenediamine

IME:

2-Imino-2-methoxyethyl-1-thioglycoside

MTX:

Methotrexate

NAp:

p-Nitroaniline

PAH:

Poly(acryl hydrazide)

PDM:

p-Phenylenediamine mustard

PEG:

Poly(ethylene glycol)

PEO:

Poly(ethylene oxide)

PGA:

Poly(glutamic acid)

poly(Lys):

Polylysine

poly(vA):

Polyvinyladenine

poly(vU):

Polyvinyluracil

PVP:

Polyvinylpyrrolidone

7 References

  1. Donaruma, L. G., Vogl, O.: Polymeric Drugs, London, Academic Press Inc. 1978

    Google Scholar 

  2. Baker, R.: Controlled Release of Bioactive Materials, New York Academic Press Inc. 1980

    Google Scholar 

  3. Lewis, D. H.: Controlled Release of Pesticides and Pharmaceuticals, New York, Plenum Press 1981

    Google Scholar 

  4. Chang, T. M. S.: Biomedical Applications of Immobilized Enzymes and Proteins, Vols. 1 and 2, New York, Plenum Press 1977

    Google Scholar 

  5. Goldberg, E. P., Nakajima, A.: Biomedical Polymers, New York, Academic Press 1980

    Google Scholar 

  6. Gebelein, C. G., Koblitz, F. F.: Biomedical and Dental Applications of Polymers, Polymer Science and Technology Vol. 14, New York, Plenum Press 1981

    Google Scholar 

  7. Chiellini, E., Guisti, P.: Polymers in Medicine: Biomedical and Pharmacological Applications, Plenum Press 1983, in press

    Google Scholar 

  8. Heller, J., Baker, R. W.: Theory and practice of controlled drug delivery from bioerodible polymers, in: Controlled Release of Bioactive Materials (ed.) Baker, R. W., p. 1, New York, Academic Press 1980

    Google Scholar 

  9. Ehrlich, P.: Studies in Immunity, New York, Wiley 1906

    Google Scholar 

  10. Ringsdorf, H.: J. Polym. Sci. Polym. Symp. 51, 135 (1975)

    Google Scholar 

  11. Pitha, J., Kusiak, J. W.,: Biological activities and targeting of soluble macromolecules, in: Controlled Release of Pesticides and Pharmaceuticals (ed.) Lewis, D. H., p. 67, New York, Plenum Press 1981

    Google Scholar 

  12. Allison, A. C., Davies, P.: Mechanisms of endocytosis and exocytosis, in: Transport at the Cellular Level, Society for Exp. Biol. Symp. xxviii, p. 419, Cambridge, Cambridge University Press 1974

    Google Scholar 

  13. Silverstein, S. C., Steinman, R. M., Cohn, Z. A.: Ann. Rev. Biochem. 46, 669 (1977)

    PubMed  Google Scholar 

  14. Stossel, T. P.: Endocytosis, in: Receptors and Recognition, Series A, (eds.) Cuatrecasas, P., Greaves, M. F. Vol 4, p. 105, London, Chapman and Hall 1977

    Google Scholar 

  15. Griffin, F. M. et al.: J. Exp. Med. 142, 1263 (1975)

    Google Scholar 

  16. Lewis, W. H.: John Hopkins Hosp. Bull. 49, 17 (1931)

    Google Scholar 

  17. Schneider, Y.-J. et al.: J. Cell Biol. 82, 449 (1979)

    Google Scholar 

  18. Barrett, A. J., Heath, M. F.: Lysosomal enzymes, in: Lysosomes, a laboratory handbook (ed.) Dingle, J. T., p. 19, Amsterdam, Elsevier/North-Holland Biomedical Press 1977

    Google Scholar 

  19. Jacques, P.: Endocytosis, in: Lysosomes in Biology and Pathology, Vol. 2 (eds.) Dingle, J. T., Fell, H. B., p. 395, Amsterdam, North Holland Biomedical Press 1969

    Google Scholar 

  20. Neufeld, E. F., Ashwell, G.: Carbohydrate recognition systems for receptor-mediated pinocytosis, in: The Biochemistry of Glycoproteins and Proteoglycans (ed.) Lennarz, W. S., p. 241, New York, Plenum Press 1980

    Google Scholar 

  21. Goldstein, J. L., Brown, M. S.: Ann. Rev. Biochem. 46, 897 (1977)

    PubMed  Google Scholar 

  22. De Duve, C. et al.: Biochem. Pharmacol. 23, 2495 (1974)

    PubMed  Google Scholar 

  23. Reijngoud, D.-J., Tager, J. M.: Biochim. Biophys. Acta 472, 419 (1977)

    Google Scholar 

  24. Lloyd, J. B.: Experimental support for the concept of lysosomal storage diseases, in: Lysosomes and Storage Diseases (eds.) Hers, H. G., Van Hoof, F., p. 173, New York and London, Academic Press 1973

    Google Scholar 

  25. Docherty, K. et al.: Biochem. J. 178, 361 (1979)

    Google Scholar 

  26. Kopeček, J.: Soluble polymers in medicine, in: Systemic Aspects of Biocompatibility (ed.) Williams, D. F., p. 159, Boca Raton, Florida, CRC Press 1981

    Google Scholar 

  27. Zaharko, D. S., Przybylski, M., Oliverio, V. T.: Meth. Canc. Res. 16, 347 (1979)

    Google Scholar 

  28. Šprincl, L. et al.: J. Biomed. Mater. Res. 10, 953 (1976)

    Google Scholar 

  29. Duncan, R. et al.: Biochem. J. 196, 49 (1981)

    Google Scholar 

  30. Cartlidge, S. A. et al.: in preparation

    Google Scholar 

  31. Cowie, J. M. G.: Polymers: Chemistry and Physics of Modern Materials, Aylesbury, UK, Int. Textbook Co. 1973

    Google Scholar 

  32. Kopeček, J., Ulbrich, K.: Progr. Polym. Sci., 9, 1 (1983)

    Google Scholar 

  33. Kopeček, J., Rejmanová, P.: Enzymatically degradable bonds in synthetic polymers, in: Controlled Drug Delivery (ed.) Bruck, S. D., p. 81, Boca Raton, Florida, CRC Press 1983

    Google Scholar 

  34. Kopeček, J.: Makromol. Chem. 178, 2169 (1977)

    Google Scholar 

  35. Kopeček, J.: Biodegradation of polymers for biomedical use, in: IUPAC Macromolecules (ed.) Benoit, H., Rempp, P., p. 305, Oxford, Pergamon Press 1982

    Google Scholar 

  36. Rejmanová, P., Obereigner, B., Kopeček, J.: Makromol. Chem. 182, 1899 (1981)

    Google Scholar 

  37. Sekiguchi, H.: Pure Appl. Chem. 53, 1689 (1981)

    Google Scholar 

  38. Vasiliev, A. E.: Medical polymers (in Russian), in: Itogi nauki i techniki 16, 3 (1981)

    Google Scholar 

  39. Gros, L., Ringsdorf, H., Schupp, H.: Angew. Chem. 93, 311 (1981)

    Google Scholar 

  40. Morawetz, H.: J. Polym. Sci., Polym. Symp. 62, 271 (1978)

    Google Scholar 

  41. Mikeš, F. et al.: Macromolecules 14, 175 (1981)

    Google Scholar 

  42. Kaplan, A. M.: Antitumor activity of synthetic polyanions, in: Anionic Polymeric Drugs (ed.) Donaruma, L. G., Ottenbrite, R. M., Vogl, O., p. 227, New York, J. Wiley 1980

    Google Scholar 

  43. Ottenbrite, R. M. et al.: Biological activity of poly (carboxylic acid) polymers, in: Polymeric Drugs (ed.) Donaruma, L. G., Vogl, O., p. 263, New York, Academic Press 1978

    Google Scholar 

  44. Hespe, W., Meier, A. M., Blankwater, Y. J.: Drug Res. 27, 1158 (1977)

    Google Scholar 

  45. Butler, G. B.: Synthesis, characterization, and biological activity of pyran copolymers, in: Anionic Polymeric Drugs (ed.) Donaruma, L. G., Ottenbrite, R. M., Vogl, O., p. 49, New York, J. Wiley 1980

    Google Scholar 

  46. Mück, K. F., Rolly, H., Burg, K.: Makromol. Chem. 178, 2773 (1977)

    Google Scholar 

  47. Mück, K. F., Christ, O., Kellner, H. M.: Makromol. Chem. 178, 2785 (1977)

    Google Scholar 

  48. Allcock, H. R. et al.: Macromolecules 10, 824 (1977)

    Google Scholar 

  49. Grolleman, C. W. J. et al.: Polyphosphazenes as a system for programmed drug release, in: Proceedings of the Int. Conf. Biomedical Polymers, p. 203, London, The Biological Engineering Society 1982

    Google Scholar 

  50. Kopeček, J., Šprincl, L., Lím, D.: J. Biomed. Mater. Res. 7, 179 (1973)

    Google Scholar 

  51. Hofmann, V., Ringsdorf, H., Muacevic, G.: Makromol. Chem. 176, 1929 (1975)

    Google Scholar 

  52. Carpino, L. A., Ringsdorf, H., Ritter, H.: Makromol. Chem. 177, 1631 (1976)

    Google Scholar 

  53. Neri, P. et al.: J. Med. Chem. 16, 893 (1973)

    Google Scholar 

  54. Antoni, G. et al.: Biopolymers 13, 1721 (1974)

    Google Scholar 

  55. Petersen, R. V. et al.: Biodegradable drug delivery systems based upon poly(L-glutamic acid) and poly(L-glutamines), in: Proceedings of the Int. Conf. Biomedical Polymers, p. 211, London, The Biological Engineering Society 1982

    Google Scholar 

  56. Pitha, J.: Polymeric drugs: Effects of polyvinyl analogs of nucleic acids on cells, animals and their viral infections, in: Biomedical and Dental Applications of Polymers (ed.) Gebelein, C. G. Koblitz, F. K., p. 203, New York, Plenum Press 1981

    Google Scholar 

  57. Takemoto, K.: Recent problems concerning functional monomers and polymers containing nucleic acid bases, in: Polymeric Drugs (ed.) Donaruma, L. G., Vogl, O., p. 103, London, Academic Press 1978

    Google Scholar 

  58. Ajisaka, K., Iwashita, Y.: Biochem. Biophys. Res. Commun. 97, 1076 (1980)

    Google Scholar 

  59. Franzmann, G., Ringsdorf, H.: Makromol. Chem. 177, 2547 (1976)

    Google Scholar 

  60. Ferrutti, P.: Il Farmaco, Ed. Sci. 32, 220 (1977)

    Google Scholar 

  61. Hörpel, G. et al.: Micellforming co-and blockcopolymers for sustained drug release, in: Proceedings of the 28th IUPAC Macromolecular Symposium, p. 346, Amherst, Ma. 1982

    Google Scholar 

  62. Duncan, R., et a.: Biochim. Biophys. Acta 717, 248 (1982)

    Google Scholar 

  63. Duncan, R., et al.: unpublished results

    Google Scholar 

  64. Hofmann, V., Ringsdorf, H., Schaumlöffel, E.: Makromol. Chem. 181, 351 (1980)

    Google Scholar 

  65. Fuller, W. D., Verlander, M. S., Goodman, M.: Biopolymers 17, 2939 (1978)

    Google Scholar 

  66. Pitha, J. et al.: Makromol. Chem. 182, 1945 (1981)

    Google Scholar 

  67. Carraher, C. E.: Organometallic polymers as drugs and drug delivery systems, in: Biomedical and Dental Applications of Polymers (ed.) Gebelein, C. G., Koblitz, F. K., p. 215, New York, Plenum Press 1981

    Google Scholar 

  68. Carraher, C. E. et al.: J. Macromol. Sci. Chem. A 15, 625 (1981)

    Google Scholar 

  69. Carraher, C. E., Moon, W. G., Langworthy, T. A.: Polymer Preprints p. 1, ACS Spring Meeting 1976

    Google Scholar 

  70. Molz, P.: Synthese und Untersuchung von potentiell spaltbaren Spacergruppen zur Polymerfixierung von NOR-Stickstoff-LOST und den Anthracyclinen Daunomycin und Adriamycin, Ph. D. Thesis, Johannes Guttenberg University Mainz, FRG 1982

    Google Scholar 

  71. Morawetz, H.: Macromolecules in Solution, New York, Interscience Publishers 1975

    Google Scholar 

  72. Shen, W. C., Ryser, H. J. P.: Biochem. Biophys. Res. Commun. 102, 1048 (1981)

    Google Scholar 

  73. Kopeček, J., Rejmanová, P., Chytrý, V.: Makromol. Chem. 182, 799 (1981)

    Google Scholar 

  74. Duncan, R. et al.: Bioscience Reports, 2, 1041 (1982)

    Google Scholar 

  75. Rejmanová et al.: Makromol. Chem., 184, 000 (1983) No. 10 — October

    Google Scholar 

  76. Baurain, R. et al.: Antitumoral activity of daunorubicin linked to proteins. II. Lysosomal hydrolysis and antitumoral activity of conjugates prepared with peptidic spacer arms, in: Proceecings of the 12th Congress of Chemotherapy, Florence 1981

    Google Scholar 

  77. Duncan, R., Kopeček, J., Lloyd, J. B.: Development of N-(2-hydroxypropyl)methacrylamide copolymers as carriers of therapeutic agents, in: Polymers in Medicine: Biomedical and Pharmacological Applications (eds.) Chiellini, E., Giusti, P., New York, Plenum Press 1983

    Google Scholar 

  78. Duncan, R. et al.: Biochim. Biophys. Acta 678, 143 (1981)

    Google Scholar 

  79. Rejmanová, P. et al.: unpublished results

    Google Scholar 

  80. Molz, P. et al.: Int. J. Biol. Macromol. 2, 245 (1980)

    Google Scholar 

  81. Hofmann, V. et al.: Makromol. Chem. 180, 837 (1979)

    Google Scholar 

  82. Obereigner, B. et al.: J. Polym. Sci. Polym. Symp. 66, 41 (1979)

    Google Scholar 

  83. Sheehan, J. C., Hess, G. P.: J. Am. Chem. Soc. 77, 1067 (1955)

    Google Scholar 

  84. Wieland, T., Kern, W., Sehring, R.: Ann. Chem. 569, 117 (1950)

    Google Scholar 

  85. Przybylski, M. et al.: Makromol. Chem. 179, 1719 (1978)

    Google Scholar 

  86. Rejmanová, P., Labský, J., Kopeček, J.: Makromol. Chem. 178, 2159 (1977)

    Google Scholar 

  87. Říhová, B. et al.: Biomaterials in press 184, 1345 (1983)

    Google Scholar 

  88. Pitha, J., Zawadski, S., Hughes, B. A.: Makromol. Chem. 183, 781 (1982)

    Google Scholar 

  89. Chytrý, V., Kopeček, J.: Makromol. Chem., 184, 1345 (1983)

    Google Scholar 

  90. Hirano, T., Klesse, W., Ringsdorf, H.: Makromol. Chem. 180, 1125 (1979)

    Google Scholar 

  91. Lääne, A. et al.: Collect. Czech. Chem. Commun. 46, 1466 (1981)

    Google Scholar 

  92. Joost, H. G., Hasselblatt, A.: Naunyn-Schmiedeberg's Arch. Pharmacol. 297, 81 (1977)

    Google Scholar 

  93. Trouet, A.: Europ. J. Cancer 14, 105 (1978)

    Google Scholar 

  94. Lee, Y. C., Stowell, C. P., Krantz, M. J.: Biochemistry 15, 3956 (1976)

    Google Scholar 

  95. Lee, R. T., Lee, Y. C.: Biochemistry 19, 156 (1980)

    Google Scholar 

  96. Kawaguchi, K. et al.: J. Biol. Chem. 256, 2230 (1981)

    Google Scholar 

  97. Kawaguchi, K. et al.: Arch. Biochem. Biophys. 205, 388 (1980)

    Google Scholar 

  98. Duncan, R. et al.: Biochim. Biophys. Acta 755, 518 (1983)

    Google Scholar 

  99. Hurwitz E. et al.: Cancer Res. 35, 1175 (1975)

    Google Scholar 

  100. Davies, D. A. L., O'Neill, G. J.: Proc. XI. Int. Cancer Cong. 1, 218 (1974)

    Google Scholar 

  101. Rowland, G. F.: Eur. J. Cancer 13, 593 (1977)

    Google Scholar 

  102. Wilchek, M.: Makromol. Chem. Suppl. 2, 207 (1979)

    Google Scholar 

  103. O'Neill, G. J.: The use of antibodies as drug carriers, in: Drug Carriers in Biology and Medicine (ed.) Gregoriadis, G., p. 23, London, Academic Press 1979

    Google Scholar 

  104. Říhová, B., Kopeček, J.: unpublished results

    Google Scholar 

  105. Winter, G. D., Leray, J. L., De Grost, K.: Evaluation of Biomaterials, Chichester-New York-Brisbane-Toronto, John Wiley & Sons 1980

    Google Scholar 

  106. Munton, C. G. F. et al.: Br. J. Ophtal. 58, 941 (1974)

    Google Scholar 

  107. Vert, M. et al.: Makromol. Chem., Suppl. 5, 284 (1981)

    Google Scholar 

  108. Duncan, R., Lloyd, J. B., Kopeček, J.: Biochem. Biophys. Res. Commun. 94, 284 (1980)

    Google Scholar 

  109. Duncan, R. et al.: Cell Biol. Int. Reports 5 (Suppl. A.), 14 (1981)

    Google Scholar 

  110. Hirano, T., Ringsdorf, H., Zaharko, D. S.: Cancer Res. 40, 2263 (1980)

    Google Scholar 

  111. Drobník et al. Makromol. Chem. 177, 2833 (1976)

    Google Scholar 

  112. Fu, T.-Y., Morawetz, H.: J. Biol. Chem. 251, 2083 (1976)

    Google Scholar 

  113. Drobník, J. et al.: J. Polym. Sci. Polym. Symp. 66, 65 (1979)

    Google Scholar 

  114. Verlander, M. et al.: Some novel approaches to the design and synthesis of peptide-catecholamine conjugates in: Polymers in Medicine: Biomedical and Pharmacological Applications (eds.) Chiellini, E., Guisti, P., Plenum Press, 1983 in press

    Google Scholar 

  115. Ryser, H. J.-P., Shen, W.-C.: Proc. Natl. Acad. Sci. USA 75, 3867 (1978)

    Google Scholar 

  116. Shen, W.-C., Ryser, H. J.-P.: Mol. Pharmacol. 16, 614 (1979)

    Google Scholar 

  117. Shen, W.-C., Ryser, H. J.-P.: Fed. Proc. 40, 642 (1981)

    Google Scholar 

  118. Chu, B. C. F., Howell, S. B.: J. of Pharm. Exp. Thera. 219, 389 (1981)

    Google Scholar 

  119. Van Heeswijk, W. A. R. et al.: Synthesis and characterisation of a macromolecular prodrug of the antitumor antibiotic adriamycin, in: Proceedings of International Symposium on Polymers in Medicine, Porto Cervo, Sardinia, p. 23, 1982

    Google Scholar 

  120. Ferruti, P. et al.: Polymeric derivatives of daunorubicin as drug delivery systems in antitumor chemotherapy, in: Proceedings of the International Symposium on Polymers in Medicine, Port Cervo, Sardinia 1982

    Google Scholar 

  121. Williams, K. E. et al.: J. Cell Biol. 64, 123 (1975)

    Google Scholar 

  122. Pratten, M. K., Williams, K. E., Lloyd, J. B.: Biochem. J. 168, 365 (1977)

    Google Scholar 

  123. Leake, D. S., Bowyer, D. E.: Biochem. Soc. Trans. 5, 130 (1977)

    Google Scholar 

  124. Bridges, J. F., Woodley, J. F. in: Maternofoetal transmission, Vol. 2, (ed.) Hemming, W., p. 249, Amsterdam, Elsevier 1979

    Google Scholar 

  125. Rowland, R. N., Woodley, J. F.: Bioscience Reps. 1, 399 (1981)

    Google Scholar 

  126. Breslow, D. S.: Pure Appl. Chem. 46, 103 (1976)

    Google Scholar 

  127. Pratten, M. K. et al.: Chem.-Biol. Interactions 35, 319 (1981)

    Google Scholar 

  128. Papamatheakis et al.: Cancer Treat. Rep. 62, 1845 (1978)

    Google Scholar 

  129. Seljelid, R., Silverstein, S. C., Cohn, Z. A.: J. Cell Biol. 57, 484 (1973)

    Google Scholar 

  130. Ryser, H. J.-P.: Nature 215, 934 (1967)

    Google Scholar 

  131. Ryser, H. J.-P., Shen, W.-C., Merk, F. B.: Life Sciences 22, 1253 (1978)

    Google Scholar 

  132. Pratten, M. K., unpublished results

    Google Scholar 

  133. Chu, B. C. F., Howell, S. B.: Biochem. Pharmacol. 30, 2545 (1981)

    Google Scholar 

  134. Noronha-Blob, L. et al.: J. Med. Chem. 20, 356 (1977)

    Google Scholar 

  135. Tirrell, D. A., Boyd, P. M.: Makromol. Chem. Rapid Commun. 2, 193 (1981)

    Google Scholar 

  136. Pratten, M. K. et al.: Biochim. Biophys. Acta 719, 424 (1982)

    Google Scholar 

  137. Cartlidge, S. A. et al., in: Proceedings of the Int. Conf. Biomedical Polymers, p. 289, London, The Biological Engineering Society 1982

    Google Scholar 

  138. Fornůsek, L., Větvička, V., Kopeček, J.: Experientia 37, 418 (1981)

    Google Scholar 

  139. Ravin, H. A., Seligman, A. M., Fine, J.: New England J. Med. 247, 921 (1952)

    Google Scholar 

  140. Regoeczi, E.: Br. J. exp. Path. 57, 431 (1976)

    Google Scholar 

  141. Munniksma, J. et al.: Biochem. J. 192, 613 (1980)

    Google Scholar 

  142. Ashwell, G., Morell, A. G.: Adv. Enzymol. 41, 99 (1974)

    PubMed  Google Scholar 

  143. Stahl, P. D. et al.: Proc. Natl. Acad. Sci. 75, 1399 (1978)

    Google Scholar 

  144. Achord, D. T. et al.: Cell 15, 269 (1978)

    PubMed  Google Scholar 

  145. Kaplan, A. et al.: J. Clin. Invest. 60, 1088 (1977)

    Google Scholar 

  146. Abel, G. et al.: Makromol. Chem. 177, 2669 (1976)

    Google Scholar 

  147. Ohno, H., Abe, K., Tsuchida, E.: Makromol. Chem. 182, 1253 (1981)

    Google Scholar 

  148. Lenz, R. W., Guerin, P.: Functional polyesters and polyamides for medical applications of biodegradable polymers, in: Polymers in Medicine: Biomedical and Pharmacologial Applications (eds.) Chiellini, E., Guisti, P. Plenum Press 1983 in press

    Google Scholar 

  149. Braswell et al.: The synthesis and titration of poly(amino acids), in: Proceedings of the International Symposium on Polymers in Medicine, Porto Cervo, Sardinia, p. 36, 1982

    Google Scholar 

  150. Kopeček, J. et al.: Makromol. Chem. 182, 2941 (1981)

    Google Scholar 

  151. Fauvarque, J. F., Malinge, J.: Synthesis of biodegradable hydrosoluble polymers, in: Proceedings of the International Symposium on Porto Cervo, Sardinia p. 41, 1982

    Google Scholar 

  152. Williams, D. F.: Introduction to the toxicology of polymer-based materials, in: Systemic Aspects of Biocompatibility (ed.) Williams, D. F. Vol. II, 51, Boca Raton, Florida, CRC Press 1981

    Google Scholar 

  153. Abuchowski, A. et al.: J. Biol. Chem. 252, 3578 (1977)

    Google Scholar 

  154. Savoca, K. V. et al.: Biochim. Biophys. Acta 578, 47 (1979)

    Google Scholar 

  155. Goldman, I. D.: Cancer Chemother. Rep. 6, 63 (1975)

    Google Scholar 

  156. Chu, B. C. F., Howell, S. B.: J. Pharm. Exp. Thera. 219, 389 (1981)

    Google Scholar 

  157. Fung et al.: J. Natl. Cancer Inst. 62, 1261 (1979)

    Google Scholar 

  158. Przybylski, M. et al.: Cancer Treatment Reps. 62, 1837 (1978)

    Google Scholar 

  159. Hörpel, G. et al.: Micelle-forming copolymers and block copolymers for sustained drug release, in: Proceeding of the International Symposium on Polymers in Medicine, Porto Cervo, Sardinia 1982

    Google Scholar 

  160. Hurwitz, E., Wilchck, M., Pitha, J.: J. Appl. Biochem. 2, 25 (1980)

    Google Scholar 

  161. Von Sprecht, B.-U., Seinfeld, H., Brendel, W.: Hoppe-Seyler's Z. Physiol. Chem. 354, 1659 (1973)

    Google Scholar 

  162. Hespe, W., Blankwater, Y. J., Wieriks, J.: Arzneim.-Forsch. 25, 1561 (1975)

    Google Scholar 

  163. Gregoriadis, G.: Drug Carriers in Biology and Medicine, London, Academic Press Inc. 1979

    Google Scholar 

  164. Knight, C. G.: Liposomes: From Physical Structure to Therapeutic Applications, Amsterdam, North-Holland Biomedical Press 1981

    Google Scholar 

  165. Nicholls, P.: Liposomes — as artifical organelles, topochemical matrices, and therapeutic carrier systems, in: Membrane Research, Classic Origins and Current Concepts (ed.) Muggleton Harris, A. L. p. 327, New York, Academic Press Inc. 1981

    Google Scholar 

  166. Kirby, C., Clarke, J., Gregoriadis, G.: Biochem. J. 186, 591 (1980)

    Google Scholar 

  167. Sunamoto, J. et al.: Improved drug delivery to target-specific organs using liposomes as coated with polysaccharide, in: Proceedings of the International Symposium on Polymers in Medicine, Porto Cervo, Sardinia, p. 3, 1982

    Google Scholar 

  168. Couvreur, P. et al.: Febs. Lett. 84, 323 (1977)

    Google Scholar 

  169. Poste, G., Fidler, I. J.: Therapeutic amplification of macrophage-mediated destruction of tumor cells, an approach to cancer chemotherapy that addresses the problem of tumor cell heterogeneity, in: Design of Models for Testing Cancer Therapeutic Agents (eds.) Fidler, I. J., White, R. J., p. 225, New York, Van Nostrand Reinhold 1982

    Google Scholar 

  170. Gregoriadis, G.: N. Engl. J. Med. 295, 704 (1976)

    Google Scholar 

  171. Gregoriadis, G. et al.: Lancet 1, 1313 (1974)

    Google Scholar 

  172. Tyrrell, D. A. et al.: Brit. Med. J. 2, 88 (1976)

    Google Scholar 

  173. Weismann, G. et al.: Ann. N. Y. Acad. Sci. 308, 235 (1978)

    Google Scholar 

  174. Mantovani, P., Pepeu, G., Amaducci, L.: Adv. Exp. Med. Biol. 72, 285 (1976)

    Google Scholar 

  175. Masturzo, P. et al.: New Engl. J. Med. 297, 338 (1977)

    Google Scholar 

  176. Zwall, R. F. A.: Biochim. Biophys. Acta 515, 163 (1978)

    Google Scholar 

  177. Allison, A. C., Gregoriadis, G.: Nature 252, 252 (1974)

    Google Scholar 

  178. Trouet, A. et al.: DNA, liposomes and proteins as carriers for antitumoral drugs, in: Recent Results in Cancer Research, Vol. 75 (eds.) Mathe, G., Muggia, F. M. p. 229, Berlin-Heidelberg, Springer-Verlag 1980

    Google Scholar 

  179. Trouet, A., Deprez-De Campeneere, D., De Duve, C.: Nature New Biol. 239, 110 (1972)

    Google Scholar 

  180. Trouet, A., Sokal, G.: Cancer Chemother. Rep. 63, 895 (1979)

    Google Scholar 

  181. Trouet, A. et al.: Proc. Natl. Acad. Sci. USA 79, 626 (1982)

    Google Scholar 

  182. Masquelier, M. et al.: Antitumoral activity of daunorubicin linked to proteins. I. Biological and antitumoral properties of peptidic derivatives of danorubicin used as intermediates, in: Proceedings of the 12th Congress of Chemotherapy, Florence 1981

    Google Scholar 

  183. Möller, G.: Antibody Carriers of Drugs and Toxins in Tumor Therapy Immunol. Rev. 62, Copenhagen, Munksgaard 1982

    Google Scholar 

  184. Newman, C. E. et al.: Lancet 1, 163 (1977)

    Google Scholar 

  185. Poznansky, M. J., Bhardwaj, D.: Can. J. Physiol. Pharmacol. 58, 322 (1980)

    Google Scholar 

  186. Poznansky, M. J., Bhardwaj, D.: Biochem. J. 196, 89 (1981)

    Google Scholar 

  187. Poznansky, M. et al.: Cancer Res. 42, 1020 (1982)

    Google Scholar 

  188. Alving, C. R. et al.: Science 205, 1142 (1979)

    Google Scholar 

  189. New, R. R. C. et al.: Nature 272, 55 (1978)

    Google Scholar 

  190. Gruenberg, J. et al.: Biochem. Biophys. Res. Commun. 88, 1173 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag

About this paper

Cite this paper

Duncan, R., Kopeček, J. (1984). Soluble synthetic polymers as potential drug carriers. In: Polymers in Medicine. Advances in Polymer Science, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-12796-8_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-12796-8_10

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12796-3

  • Online ISBN: 978-3-540-38740-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics