Advertisement

Some physical applications of solitons

  • Harvey Segur
School
Part of the Lecture Notes in Physics book series (LNP, volume 189)

Keywords

Riemann Surface Periodic Wave Water Wave Theta Function Moderate Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. M. J. Ablowitz, D. Bar Yaacov and A. S. Fokas, On the inverse scattering transform for the KadomtsevPetviashvili equation. Preprint, 1982.Google Scholar
  2. M. J. Ablowitz and A. S. Fokas, in these Procedings.Google Scholar
  3. M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform. SIAM, Philadelphia, 1981.Google Scholar
  4. P. J. Bryant, J. Fluid Mech. 115, 525–532 (1982).Google Scholar
  5. P. F. Byrd and M. D. Friedman, Handbrook of Elliptic Integrals for Engineers and Scientists. Spinger-Verlag, New York, 1971.Google Scholar
  6. B. A. Dubrovin, Funct. Anal. Appl. 9, 215–223 (1975).CrossRefGoogle Scholar
  7. B. A. Dubrovin, Russian Math. Surveys 38, 11–92 (1981).Google Scholar
  8. B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, Russian Math. Surveys 31, 59–146 (1976).Google Scholar
  9. B. A. Dubrovin and S. P. Novikov, Sov. Phys. JETP 40, 1058–1063 (1974).Google Scholar
  10. C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Phys. Rev. Lett. 19, 1095–1097 (1967).CrossRefGoogle Scholar
  11. C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Commun. Pure Appl. Math. 27, 97–133 (1974).Google Scholar
  12. J. L. Hammack and H. Segur, J. Fluid Mech. 65, 289–314 (1974).Google Scholar
  13. J. L. Hammack and H. Segur, J. Fluid Mech. 84, 337–358 (1978).Google Scholar
  14. A. R. Its and V. B. Matveev, Funct. Anal. Appl. 9, 67ff (1975).Google Scholar
  15. R. S. Johnson, J. Fluid Mech. 120, 49–70 (1982).Google Scholar
  16. B. B. Kadomtsev and V. I. Petviashvili, Sov. Phys. Dokl. 15, 539–541 (1970).Google Scholar
  17. D. J. Korteweg and G. de Vries, Philos. Mag. Ser. 5, 39, 422–443 (1895).Google Scholar
  18. I. M. Krichever, Sov. Math. Dokl. 17, 394–397 (1976).Google Scholar
  19. I. M. Krichever and S. P. Novikov, in Sov. Scient. Rev. §C, Math. Phys. Rev. 1, ed. by S. P. Novikov, (1980)Google Scholar
  20. H. Lamb, Hydrodynamics. Dover, New York, (1932).Google Scholar
  21. P. D. Lax, Comm. Pure. Appl. Math. 28, 141–188 (1975).Google Scholar
  22. T. Maxworthy, J. Fluid Mech. 96, 47–64 (1980).Google Scholar
  23. H. P. McKean and E. Trubowitz, Comm. Pure Appl. Math. 29, 143–226 (1976).Google Scholar
  24. H. P. McKean and P. van Moerbeke, Invent. Math. 30, 217ff (1975).CrossRefGoogle Scholar
  25. J. W. Miles, J. Fluid Mech. 79, 157–169 (1977a).Google Scholar
  26. J. W. Miles, J. Fluid Mech. 79, 171–179 (1977b).Google Scholar
  27. A. Nakumura, J. Phys. Soc. Japan 47, 1701–1705 (1979).Google Scholar
  28. S. P. Novikov, Funct. Anal. Appl. 8, 236–246 (1974).CrossRefGoogle Scholar
  29. T. Sarpkaya and M. Isaacson, Mechanics of Waves Forces on Offshore Structures. Van Nostrand Reinhold Co., New York, 1981.Google Scholar
  30. J. Satsuma, J. Phys. Soc. Japan 40, 286–290 (1970).Google Scholar
  31. G. G. Stokes, Trans. Cambridge Phil. Soc. 8, 441–455 (1847).Google Scholar
  32. P. D. Weidman and T. Maxworthy, J. Fluid Mech. 85, 417–431 (1978).Google Scholar
  33. N. J. Zabusky and C. J. Galvin, J. Fluid Mech. 47, 811–824 (1971).Google Scholar

References

  1. M. J. Ablowitz, A. S. Fokas, J. Satsuma, and H. Segur, On the periodic intermediate long wave equation. J. Phys. A, 15, 781 (1982).Google Scholar
  2. M. Abramowitz and I. A. Stegun Handbook of Mathematical Functions. N.B.S., Washington D.C., 1964.Google Scholar
  3. T. B. Benjamin, J. Fluid Mech. 25, 241 (1966).Google Scholar
  4. T. B. Benjamin, J. Fluid Mech. 29, 559 (1967).Google Scholar
  5. D. J. Benney, J. Math. & Phys. 45, 52 (1966).Google Scholar
  6. H. H. Chen and Y. C. Lee, Phys. Rev. Lett. 43, 264 (1979).CrossRefGoogle Scholar
  7. V. D. Djordjevic, and L. G. Redekoop, J. Phys. Oceanog. 8, 1016 (1978).CrossRefGoogle Scholar
  8. J. L. Hammack, Tsunamis— a model of their generation and propagation. W. M. Keck Lab., Caltech report KH-R-28, 1972.Google Scholar
  9. J. L. Hammack, J. Phys. Oceanog. 10, 1455 (1980).CrossRefGoogle Scholar
  10. J. L. Hammack and H. Segur, J. Fluid Mech. 65, 289 (1974).Google Scholar
  11. J. L. Hammack and H. Segur, J. Fluid Mech. 84, 337 (1978).Google Scholar
  12. R. I. Joseph, J. Phys. A 10, L225 (1977).Google Scholar
  13. R. I. Joseph and R. C. Adams, Phys. Fluids 24, 15 (1981).CrossRefGoogle Scholar
  14. R. I. Joseph and R. Egri, J. Phys. A 11, L97 (1978).Google Scholar
  15. G. H. Keulegan, J. Res. Nat. Bur. Stand. 51, 133 (1953).Google Scholar
  16. Y. Kodama, J. Satsuma, and M. J. Ablowitz, Phys. Rev. Lett. 46, 687 (1981).CrossRefGoogle Scholar
  17. C. G. Koop, and G. Butler, J. Fluid Mech. 112, 225 (1981).Google Scholar
  18. D. J. Korteweg and G. De Vries, Phil. Mag. 39, Ser. 5, 422 (1895).Google Scholar
  19. T. Kubota, D. R. S. Ko, and L. Dobbs, A. I. A. A. J. Hydronaut. 12, 157 (1978).Google Scholar
  20. H. Lamb, Hydrodynamics.Dover, 1932.Google Scholar
  21. C. Leone, H. Segur, and J. L. Hammack, Phys. Fluids 25, 942 (1982).CrossRefGoogle Scholar
  22. R. R. Long, Tellus 8, 460 (1956).Google Scholar
  23. J. W. Miles, Tellus 31, 456 (1979).Google Scholar
  24. H. Ono, J. Phys. Soc. Japan 39, 1082 (1975).Google Scholar
  25. A. R. Osborne, and T. L. Burch, Science 208, 451 (1980).Google Scholar
  26. A. S. Peters, and J. J. Stoker, Commun. Pure Appl. Math. 13, 115 (1960).Google Scholar
  27. J. Satsuma, M. J. Ablowitz, and Y. Kodama, Phys. Lett. 73A, 283 (1979).Google Scholar
  28. H. Segur, J. Fluid Mech. 59, 721 (1973).Google Scholar
  29. H. Segur, and J. L. Hammack, Long internal waves in layers of equal depth. (Preprint 1982).Google Scholar

References

  1. M. J. Rice, Phys. Lett. 71A, 152, (1979).Google Scholar
  2. [2]D. K. Campbell and A. R. Bishop, Nuclear Physics B 200, 297, (1982).Google Scholar
  3. W. P. Su, J. R. Scrieffer, and A. J. Heeger, Phys. Rev. Lett. 42, 1698, (1979).CrossRefGoogle Scholar
  4. M. J. Rice and E. J. Mele, Solid State Comm. 35, 487, (1980).CrossRefGoogle Scholar
  5. D. K. Campbell, J. F. Schonfeld, and C. A. Wingate, Resonance structure in kink-antikink interaction in ø4 theory. (Preprint.)Google Scholar
  6. M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, Phys. Rev. Lett. 30, 1262, (1973).CrossRefGoogle Scholar
  7. M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform. SIAM, Philadelphia, 1981.Google Scholar
  8. G. L. Lamb, Elements of Soliton Theory. Wiley-Interscience, New York, 1980.Google Scholar
  9. I. M. Gel'fand and B. M. Levitan, American Mathematical Society Translation, Series 2, 1, 259, (1955).Google Scholar
  10. G. G. Stokes, Trans. Cambridge Phil. Soc. 8, 81 (1847); (Papers 1, 197).Google Scholar
  11. M. D. Kruskal, J. Math. Phys. 3, 806, (1962).CrossRefGoogle Scholar
  12. D. W. McLaughlin, J. Math. Phys. 16, 96, (1975).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Harvey Segur
    • 1
  1. 1.Aeronautical Research Associates of Princeton, Inc.PrincetonUSA

Personalised recommendations