Advertisement

The technique of variable separation for partial differential equations

  • Willard MillerJr.
School
Part of the Lecture Notes in Physics book series (LNP, volume 189)

Keywords

Laplace Equation Integrability Condition Helmholtz Equation Point Symmetry Separation Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Miller, Jr., Symmetry and Separation of Variables. Addison-Wesley, 1977.Google Scholar
  2. [2]
    L. P. Eisenhart, Continuous Groups of Transformations. Dover reprint, 1961.Google Scholar
  3. [3]
    E. G. Kalnins and W. Miller, Jr., Intrinsic characterization of variable separation for the partial differential equations of mechanics.Symposium on Modern Developments in Analytical Mechanics (Torino, Italy, June 1982). (To appear.)Google Scholar
  4. [4]
    P. J. Olver, Symmetry groups and group invariant solutions of partial differential equations. J. Diff. Geom. 14, 497–542 (1979).Google Scholar
  5. [5]
    P. J. Olver, Applications of Lie Groups to Differential Equations. Mathematical Institute Lecture Notes, Oxford, 1980.Google Scholar
  6. [6]
    G. W. Bluman and J. D. Cole, Similarity Methods for Differential Equations. Applied Mathematical Series # 13, Springer-Verlag, 1974.Google Scholar
  7. [7]
    L. V. Ovsjannikov, Group Properties of Differential Equations. Academic Press, 1982.Google Scholar
  8. [8]
    L. P. Eisenhart, Riemannian Geometry. Princeton University Press, 2nd printing, 1949.Google Scholar
  9. [9]
    T. W. Koornwinder, A precise definition of separation of variables. Proceedings of the Scheveningen Conference of Differential Equations. Lecture Notes in Mathematics, Springer-Verlag, 1980.Google Scholar
  10. [10]
    L. P. Eisenhart, Separable systems of Stäckel. Ann. Math. 35, 284–305 (1934).MathSciNetGoogle Scholar
  11. [11]
    E. G. Kalnins and W. Miller, Jr., Killing tensors and nonorthogonal variable separation for the Hamilton-Jacobi equation. SIAM J. Math. Anal. 12, 617–638 (1981).CrossRefGoogle Scholar
  12. [12]
    E. G. Kalnins and W. Miller, Jr., Conformal Killing tensors and variable separation for the Hamilton-Jacobi equation. SIAM J. Math. Anal. (To appear.)Google Scholar
  13. [13]
    E. G. Kalnins and W. Miller, Jr., The theory of orthogonal R-separation for Helmholtz equations. Advances in Mathematics (To appear.)Google Scholar
  14. [14]
    E. G. Kalnins and W. Miller, Jr., Some Remarkable R-separable coordinate systems for the Helmholtz equation. Lett. Math. Phys. 4, 469–474 (1980).CrossRefGoogle Scholar
  15. [15]
    E. G. Kalnins and W. Miller, Jr., Killing tensors and variable separation for Hamilton-Jacobi and Helmholtz equations. SIAM J. Math. Anal. 11, 1011–1026 (1980).CrossRefGoogle Scholar
  16. [16]
    E. G. Kalnins and W. Miller, Jr., Intrinsic characterization of orthogonal R-separation for Laplace equations. (To appear.)Google Scholar
  17. [17]
    E. G. Kalnins and W. Miller, Jr., The general theory of R-separation for Helmholtz equations. J. Math. Phys. (To appear.)Google Scholar
  18. [18]
    E. G. Kalnins and W. Miller, Jr., Related evolution equations and Lie symmetries. (Submitted.)Google Scholar
  19. [19]
    L. Landau and E. Lifshitz, Quantum Mechanics, Non-Relativistic Theory. (Translated from Russian.) Addison-Wesley, 1958.Google Scholar
  20. [20]
    S. Kumei and G. W. Bluman, When nonlinear differential equations are equivalent to linear differential equations. SIAM J. Appl. Math. 42, 1157–1173 (1982).CrossRefGoogle Scholar
  21. [21]
    E. G. Kalnins and W. Miller, Jr., Separation of variables on n-dimensional Riemannian manifolds. I. The n-sphere and Euclidean n-space. (To appear.)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Willard MillerJr.
    • 1
  1. 1.School of MathematicsUniversity of MinnesotaUSA

Personalised recommendations