Integrable dynamical systems and related mathematical results

  • Francesco Calogero
Part of the Lecture Notes in Physics book series (LNP, volume 189)


Poisson Bracket Singular Integral Equation Singular Integral Operator Equilibrium Configuration Hermite Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A1977]
    M. Adler, Some finite-dimensional integrable systems. Commun. Math. Phys. 55, 195–230 (1977).CrossRefGoogle Scholar
  2. [A1978]
    M. Adler, Some finite-dimensional integrable systems. In [FG1978], pp. 237–244.Google Scholar
  3. [A1979]
    D. Atkinson, Inversion of an equation of Calogero. In [S1979], Editions du CNRS, Paris, 1980 pp. 267–270.Google Scholar
  4. [ABCOP1979]
    S. Ahmed, M. Bruschi, F. Calogero, M. A. Olshanetsky, and A. M. Perelomov, Properties of the zeros of the classical polynomials and of the Bessel functions. Nuovo Cimento 49B, 173–199 (1979).Google Scholar
  5. [AM1978]
    M. Adler and J. Moser, On a class of polynomials connected with the KdV equation. Commun. Math. Phys. 61, 1–30 (1978).CrossRefGoogle Scholar
  6. [AMM1977]
    H. Airault, H. P. McKean, and J. Moser, Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem. Comm. Pure Appl. Math. 30, 95–148 (1977).Google Scholar
  7. [B1980]
    G. Barucchi, Graphs and an exactly solvable N-body problem in one dimension.Google Scholar
  8. [Ba1978]
    A. O. Barut (ed.), Nonlinear Equations in Physics and Mathematics. Reidel, 1978.Google Scholar
  9. [BB1980]
    C. Bardos and D. Bessis (eds.), Bifurcation Phenomena in Mathematical Physics and Related Topics. Reidel, 1980.Google Scholar
  10. [BC1981]
    M. Bruschi and F. Calogero, Finite dimensional matrix representations of the operator of differentiation through the algebra of raising and lowering operators: general properties and explicit examples. Nuovo Cimento 6213, 337–351 (1981).Google Scholar
  11. [BR1977]
    G. Barucchi and T. Regge, Conformal properties of a class of exactly solvable N-body problems in space dimension one. J. Math. Phys. 18, 1149–1163 (1977).CrossRefGoogle Scholar
  12. [C1971]
    F. Calogero, Solution of the one-dimensional N-body problem with quadratic and/or inversely quadratic pair potentials. J. Math. Phys. 12, 419–436 (1971).CrossRefGoogle Scholar
  13. [C1975]
    F. Calogero, Exactly solvable one-dimensional many-body problems. Lett. Nuovo Cimento 13, 411–416 (1976).Google Scholar
  14. [C1976]
    F. Calogero, On a functional equation connected with integrable many-body problems. Lett. Nuovo Cimento 16, 77–80 (1976).Google Scholar
  15. [C1976a]
    F. Calogero, Exactly solvable two-dimensional many-body problems. Lett. Nuovo Cimento 15, 35–38 (1976).Google Scholar
  16. [C1976b]
    F. Calogero, A sequence of Lax matrices for certain integrable hamiltonian systems. Lett. Nuovo Cimento 16, 22–24 (1976).Google Scholar
  17. [C1977]
    F. Calogero, On the zeros of the classical polynomials. Lett. Nuovo Cimento 19, 506–508 (1977).Google Scholar
  18. [C1977b]
    F. Calogero, Equilibrium configuration of the one-dimensional n-body problem with quadratic and inversely quadratic pair potentials. Lett. Nuovo Cimento 20, 251–253 (1977).Google Scholar
  19. [C1977c]
    F. Calogero, On the zeros of Hermite polynomials. Lett. Nuovo Cimento 20, 489–490 (1977).Google Scholar
  20. [C1978]
    F. Calogero, Integrable many-body problems. In [Ba1978], pp. 3–53.Google Scholar
  21. [C1978a]
    F. Calogero, Motions of poles and zeros of special solutions of nonlinear and linear partial differential equations and related “solvable” many-body problems. Nuovo Cimento 4313, 177–241 (1978).Google Scholar
  22. [C1979]
    F. Calogero, Singular integral operators with integral eigenvalues and polynomial eigenfunctions. Nuovo Cimento 51B, 1–14 (1979); 53B, 463 (1979).Google Scholar
  23. [C1979a]
    F. Calogero, Integral representations and generating function for the polynomials U n(α,β)(γ). Lett. Nuovo Cimento 24, 595–600 (1979).Google Scholar
  24. [C1980]
    F. Calogero, Solvable many-body problems and related mathematical findings (and conjectures). In [BB1980], pp. 371–384.Google Scholar
  25. [C1980a]
    F. Calogero, Integrable many-body problems and related mathematical results. In [Co1981] pp. 151–164.Google Scholar
  26. [C1980b]
    F. Calogero, Isospectral matrices and polynomials. Nuovo Cimento 58B, 169–180 (1980).Google Scholar
  27. [C1980c]
    F. Calogero, Finite transformations of certain isospectral matrices. Lett. Nuovo Cimento 28, 502–504 (1980).Google Scholar
  28. [C1981]
    F. Calogero, Matrices, differential operators and polynomials. J. Math. Phys. 22, 919–932 (1981).CrossRefGoogle Scholar
  29. [C1981a]
    F. Calogero, Additional identities for certain isospectral matrices. Lett. Nuovo Cimento 30, 342–344 (1981).Google Scholar
  30. [C1982]
    F. Calogero, Isospectral matrices and classical polynomials. Linear Alg. Appl. 44, 55–60 (1982).CrossRefGoogle Scholar
  31. [C1982a]
    F. Calogero, Disproof of a conjecture. Lett. Nuovo Cimento 35, 181–185 (1982).Google Scholar
  32. [C1982b]
    F. Calogero, Lagrangian interpolation and differentiation. Lett. Nuovo Cimento 36, 273–278 (1982).Google Scholar
  33. [CC1977]
    D. V. Chudnovky and G. V. Chudnovsky, Pole expansions of nonlinear partial differential equations. Nuovo Cimento 40B, 339–353 (1977).Google Scholar
  34. [CD1982]
    F. Calogero and A. Degasperis, Spectral Transform and Solitons: Tools to Solve and Investigate Nonlinear Evolution Equations. Volume 1. North Holland, 1982.Google Scholar
  35. [CM1974]
    F. Calogero and C. Marchioro, Exact solution of a one-dimensional three-body scattering problem with two-body and/or three-body inverse-square potentials. J. Math. Phys. 15, 1425–1430 (1974).CrossRefGoogle Scholar
  36. [CMR1975]
    F. Calogero, C. Marchioro, and O. Ragnisco, Exact solution of the classical and quantal onedimensional many-body problems with the two-body potential g 2 α 2/sinb2(αγ). Lett. Nuovo Cimento 13, 383–387 (1975).Google Scholar
  37. [Co1981]
    E. G. D. Cohen (ed.), Fundamental Problems in Statistical Mechanics, V, Proceedings of the 1980 Enschede Summer School, North Holland, 1981.Google Scholar
  38. [CP1978]
    F. Calogero and A. M. Perelomov, Asymptotic density of the zeros of Hermite polynomials of diverging order, and related properties of certain singular integral operators. Lett. Nuovo Cimento 23, 650–652 (1978).Google Scholar
  39. [F1974]
    H. Flaschka, The Toda lattice. I. Phys. Rev. B9, 1924–1925 (1974).Google Scholar
  40. [F1974a]
    H. Flaschka, On the Toda lattice. II. Prog. Theor. Phys. 51, 703–716 (1974).Google Scholar
  41. [FG1978]
    H. Flaschka and D. W. McLaughlin (eds.), Proceedings of the conference on the Theory and Application of Solitons (Tucson, Jan. 1976). Rocky Mountain J. Math. 8, No. 1 and 2, 1978.Google Scholar
  42. [G1975]
    P. J. L. Gambardella, Exact results in quantum many-body systems of interacting particles in many dimensions with SU(1,1) as the dynamical group. J. Math. Phys. 15, 1172–1187 (1975).CrossRefGoogle Scholar
  43. [GM1975]
    G. Gallavotti and C. Marchioro, On the calculation of an integral. J. Math. Anal. Appl. 44, 661–675 (1975).CrossRefGoogle Scholar
  44. [H1980]
    R. Helleman, Self-generated chaotic behaviour in nonlinear mechanics. In [Co1981], pp. 165–233.Google Scholar
  45. [HTF1953]
    Higher Transcendental Functions, Vol. 2, (compiled by the staff of the Bateman manuscript project, A. Erdèlyi, director), Mc Graw-Hill, 1953.Google Scholar
  46. [J1866]
    C. Jacobi, Problems trium corporum mutis attractionibus cubus distantiarum inverse proportionalibus recta lines se moventium. In Gesammelte Werke, Vol. 4, Berlin, 1866.Google Scholar
  47. [K1978]
    I. M. Krichever, Rational solutions of the Kadomtsev-Petviashvili equation and many-body problems. Func. Anal. Appl. 12, 59–61 (1978). [Original Russian reference: Funk. Anal. ego Pril. 12, 76–78 (1978).Google Scholar
  48. [K1980]
    I. M. Krichever, Elliptic solutions of the Kadomtsev-Petviashvili equation and integrable systems of particles. Func. Anal. Appl. 14, 282–290 (1980). [Original Russian reference: Funk. Anal ego Pril. 14, 45–54 (1980).]CrossRefGoogle Scholar
  49. [KKS1978]
    D. Každan, B. Kostant, and S. Sternberg, Hamiltonian group actions and dynamical systems of the Calogero type. Comm. Pure Appl. Math. 31, 481–507 (1978).Google Scholar
  50. [KL1972]
    D. C. Khandekar and S. V. Lawande, Solution of a one-dimensional three-body problem in classical mechanics. Amer J. Phys. 40, 458–462 (1972).Google Scholar
  51. [L1968]
    P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 21, 467–490 (1968).Google Scholar
  52. [M1970]
    C. Marchioro, Solution of a three-body scattering problem in one dimension. J. Math. Phys. 11, 2193–2196 (1970).CrossRefGoogle Scholar
  53. [M1975]
    J. Moser, Three integrable hamiltonian systems connected with isospectral deformations. Adv. in Math. 16, 197–220 (1975).CrossRefGoogle Scholar
  54. [Man1974]
    S. V. Manakov, Complete integrability and stochastization of discrete dynamical systems. Sov. Phys. JETP 40, 269–274 (1974).Google Scholar
  55. [Mu1978]
    M. E. Muldoon, An infinite system of equations characterizing the zeros of Bessel functions. Lett. Nuovo Cimento 23, 447–448 (1978).Google Scholar
  56. [OP1976]
    M. A. Olshanetsky and A. M. Perelomov, Explicit solution of the Calogero model in the classical case and geodesic flows of zero curvature. Lett. Nuovo Cimento 16, 333–339 (1970).Google Scholar
  57. [OP1977]
    M. A. Olshanetsky and A. M. Perelomov, Quantum completely integrable systems connected with semi-simple Lie algebras. Lett. Math. Phys. 2, 7–13 (1977).CrossRefGoogle Scholar
  58. [OP1981]
    M. A. Olshanetsky and A. M. Perelomov, Classical integrable finite-dimensional systems related to Lie algebras. Physics Reports 71, 313–400 (1981).CrossRefGoogle Scholar
  59. [OP1983]
    M. A. Olshanetsky and A. M. Perelomov, Quantal integrable systems related to Lie algebras. Physics Reports (to be published).Google Scholar
  60. [OP1978]
    M. A. Olshanetsky and V. B. K. Rogov, Bound states in completely integrable systems with two types of particles. Ann. Inst. H. Poincaré 29, 169–177 (1978).Google Scholar
  61. [P1971]
    A. M. Perelomov, Algebraic approach to the solution of a one-dimensional model of N interacting particles. Teor. Mat. Fis. 6, 364 (1971).Google Scholar
  62. [P1978]
    A. M. Perelomov, The simple relation between certain dynamical systems. Commun. Math. Phys. 63, 9–11 (1978).CrossRefGoogle Scholar
  63. [P1978a]
    A. M. Perelomov, Equilibrium configuration and small oscillations of some dynamical systems. Ann. Inst. H. Poincaré A28, 407–415 (1978).Google Scholar
  64. [S1978]
    P. C. Sabatier, On the solutions of an infinite system of nonlinear equations. Lett. Nuovo Cimento 21, 41–44 (1978).Google Scholar
  65. [S1979]
    P. C. Sabatier (ed.), Problèmes inverses, évolution non linéaire. Comptes rendus de la rencontre R.C. P. 264 (Montpellier, Oct. 1979), Editions du CNRS, Paris, 1980.Google Scholar
  66. [Sz1939]
    G. Szegő, Orthogonal Polynomials. AMS Coll. Publ. 23, Providence, R. I., 1939.Google Scholar
  67. [W1974]
    J. Wolfes, On the three-body linear problem with three-body interaction. J. Math. Phys. 15, 1420–1424 (1974).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Francesco Calogero
    • 1
  1. 1.Dipartimento di FisicaUniversità di RomaRomeItaly

Personalised recommendations