Skip to main content

Order in the Chaotic region

  • Workshop
  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 189))

Abstract

A simple algorithm is constructed for the quadratic one-parameter family of maps. It predicts the number of periodic orbits of arbitrary period ocurring for parameter values lower than any other corresponding to a given stable periodic orbit. This algorithm produces the number of periodic unstable points coexisting with the stable periodic orbit. This method associates an important polynomial in a one-to-one correspondence with the symbol of Metropolis et al. for ordering the periodic orbits, with the permutation matrix of the dynamics of points in the stable cycle, and with the matrix of regions separated by these points.

These polynomials coincide with those polynomials used by many authors in connection with the triangular map and with the topological entropy.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Libchaber and J. Maurer, Local probe in a Rayleigh-Benard experiment in liquid helium. J. Phys. (Paris) Lett. 39 L, 369–372; Yu N. Belyaev, A. A. Monakhov, S. A. Sherbakov, and I. M. Yavorskaya, Onset of turbulence in rotating fluids. JETP Lett. 29, 295–298 (1979); J. P. Gollub, S. V. Benson, and J. Steinman, A subharmonic route to turbulent convection. Ann. N.Y. Acad. Sci. 357, 22–27 (1981); M. Giglio, S. Musazzi, and U. Perini, Transition to chaotic behavior via a reproducible sequence of period-doubling bifurcations, Phys. Rev. Lett. 47, 243–246 (1981).

    Google Scholar 

  2. R. H. Simoyi, A. Wolf and H. L. Swinney, One-dimensional dynamics in a multicomponent chemical reaction, Phys. Rev. Lett. 49, 245–248 (1982).

    Article  Google Scholar 

  3. J. Testa, J. Perez, and C. Jeffries, Evidences for universal chaotic behavior of a driven nonlinear oscillator, Phys. Rev. Lett. 48, 714–717 (1982).

    Article  Google Scholar 

  4. P. S. Linsay, Period doubling and chaotic behavior in a driven enharmonic oscillator, Phys. Rev. Lett. 47, 1349–1352 (1981); F. T. Arecchi and F. Lisi, Hopping mechanism generating 1/f noise in nonlinear systems. Phys. Rev. Lett. 49, 94–98 (1982); R. W. Rollins and E. R. Hunt, Exactly solvable model of a physical system exhibiting universal chaotic behavior. Phys. Rev. Lett. 49, 1295–1298 (1982).

    Article  Google Scholar 

  5. H. M. Gibbs, F. A. Hopf, D. L. Kaplan, and R. L. Shoemaker, Observation of chaos in optical bistability. Phys. Rev. Lett. 46, 474–477 (1981); F. T. Arecci, R. Meucci, G. Puccioni, and J. Tradicce, Experimental evidence of subharmonic bifurcations, multistability and turbulence in a Q-switched gas laser. Phys. Rev. Lett. 49, 1217–1220 (1982).

    Article  Google Scholar 

  6. R. Keolian, L. A. Turkevich, S. J. Putterman, I. Rudnick, and J. A. Rudnick, Subharmonic sequences in the Faraday experiment: departures from period doubling. Phys. Rev. Lett. 47, 1133–1136 (1981); W. Lauterborn and E. Cramer, Subharmonic route to chaos observed in acoustics. Phys. Rev. Lett. 47, 1445–1448 (1981); C. W. Smith, M. J. Tejwani and D. A. Farris, Bifurcation universality for first-sound subharmonic generation in superfluid helium 4. Phys. Rev. Lett. 48, 492–494 (1982).

    Article  Google Scholar 

  7. R. M. May, Simple mathematical models with very complicated dynamics. Nature 281, 459–467 (1976); P. J. Myrberg, Iteration von Quadratwurzeloperationen, Iteration der Reelen Polynome Zweiten Grades. Ann. Akad. Sci. Fennicæ A, I Nos. 259, (1958), 336/3, (1963); E. N. Lorenz, The problem of deducing the climate from the governing equations. Tellus 16, 1–11 (1964); P. Collet and J. P. Eckman, Iterated maps on the interval as dynamcal systems. Birkhäuser, Basel, 1980.

    Google Scholar 

  8. N. Metropolis, M. L. Stein, and P. R. Stein, On finite limit sets for transformations on the unit interval. J. Combinatorial Theory 15A, 25–44 (1973).

    Article  Google Scholar 

  9. M. J. Feigenbaum, Quantitative universality for a class of nonlinear transformations. J. of Stat. Phys. 19, 25–52 (1978); ib., The universal metric properties of nonlinear transformations. J. of Stat. Phys. 21, 669–706 (1979); ib., The transition to aperiodic behavior in turbulent systems. Commun. Mat. Phys. 77, 65–68 (1980).

    Article  Google Scholar 

  10. B. Derrida, A. Gervois, and Y. Pomeau, Iteration of endomorphisms on the real axis and representation of numbers. Ann. Inst. Henri Poincaré A29, 305–356 (1978).

    Google Scholar 

  11. J. Guckenheimer, On the bifurcation of maps of the interval. Invent. Math. 39, 165–178 (1977).

    Article  Google Scholar 

  12. O. Stefan, A theorem of Sarkovskiî on the existence of periodic orbits of continuous endomorphisms of the real line. Commun. Math. Phys. 54, 237–248 (1977).

    Google Scholar 

  13. S. Smale and R. Williams, The quantitative analysis of a difference equation of population growth. J. Math. Biol. 3, 1–4 (1976).

    PubMed  Google Scholar 

  14. J. Guckenheimer, G. Oster, and A. Ipaktchi, The dynamics of density dependent population models. J. Math. Biol. 4, 101–147 (1977).

    Google Scholar 

  15. C. Jordan, Calculus ofFinite Differences, Chelsea Publishing Co., 1979. p. 593.

    Google Scholar 

  16. R. S. Varga, Matrix Iterative Analysis. Prentice-Hall, 1962.

    Google Scholar 

  17. J. Guckenheimer, Sensitive dependence to initial conditions for one dimensional maps. Commun. Math. Phys. 70, 133–160 (1979).

    Google Scholar 

  18. L. Block, J. Guckenheimer, M. Misiurewicz, and L. S. Young, Periodic Points and Topological Entropy of One Dimensional Maps. Lecture Notes in Mathematics, #819, Spriger Verlag, 1980. pp. 18–34.

    Google Scholar 

  19. D. Ruelle, Applications consevant une measure absolument continue por rapport a dx sur [0,1]. Commun. Math. Phys. 55, 47 (1977).

    Google Scholar 

  20. F. C. Hoppenstead and J. M. Hyman, Periodic solutions of a logistic difference equation. SIAM J. Appl. Math. 32, 73–81 (1977).

    Google Scholar 

  21. S. Grossman and S. Thomae, Invariant distributions and stationary correlation functions of one-dimensional discrete processes. Z. Naturforsch. 32a, 1353–1363 (1977).

    Google Scholar 

  22. S. J. Chang and J. Wright, Transitions and distribution functions for chaotic systems. Phys. Rev. A23, 1419–1433 (1981).

    Google Scholar 

  23. R. Shaw, Stange attractors, chaotic behavior, and information flow. Z. Naturforsch. 36a, 80–112 (1981.)

    Google Scholar 

  24. J. Dias de Deus, R. Dilão, and J. Taborda Duarte, Topological entropy and approaches to chaos in dynamics of the interval. Phys. Lett. 90A, 1–4 (1982).

    Google Scholar 

  25. K. Goldberg, M. Newman, and E. Haynsworth, in Handbook of Mathematical Functions. (M. Abramowitz and I. A. Stegun eds.) Dover Publ. 1965. p. 826.

    Google Scholar 

  26. E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences. Illinois J. Math. 5, 657–665 (1961).

    Google Scholar 

  27. O. Chavoya, F. Angulo, and E. Piña. (To be published.)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

K. B. Wolf

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag

About this paper

Cite this paper

Piña, E. (1983). Order in the Chaotic region. In: Wolf, K.B. (eds) Nonlinear Phenomena. Lecture Notes in Physics, vol 189. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-12730-5_23

Download citation

  • DOI: https://doi.org/10.1007/3-540-12730-5_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12730-7

  • Online ISBN: 978-3-540-38721-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics