The geometry of complex self-dual Einstein spaces

  • Charles P. Boyer
Part of the Lecture Notes in Physics book series (LNP, volume 189)


Complex Manifold Tangent Bundle Symplectic Manifold Symplectic Structure Null Geodesic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. F. Plebański, Some solutions of complex Einstein equations. J. Math. Phys. 16, 2395–2402 (1975).CrossRefGoogle Scholar
  2. [2]
    J. D. Finley III and J. F. Plebadski, Further heavenly metrics and their symmetries. J. Math. Phys. 17, 585–596 (1976).CrossRefGoogle Scholar
  3. [3]
    C. P. Boyer and J. F. Plebadski, Heavens and their integral manifolds. J. Math. Phys. 18, 1022–1031 (1977).CrossRefGoogle Scholar
  4. [4]
    C. P. Boyer and J. F. Plebański, General relativity and G-structures. I. General theory and algebraically degenerate spaces. Rep. Math. Phys. 14, 111–145 (1978).CrossRefGoogle Scholar
  5. [5]
    C. P. Boyer, J. D. Finley III, and J. F. Plebański, Complex general relativity, H and HH spaces —a survey of one approach. In General Relativity and Gravitation, Vol. 2, A. Held ed., Plenum Press, 1980, pp. 241–281.Google Scholar
  6. [6]
    R. Penrose, Nonlinear gravitons and curved twistar theory. GRG 7, 31–52 (l976).Google Scholar
  7. [7]
    R. Penrose and R. S. Ward, Twistars for flat and curved space-time. In General Relativity and Gravitation, Vol. 2, A. Held ed., Plenum Press, 1980, pp. 283–328.Google Scholar
  8. [8]
    R. O. Hansen, E. T. Newman, R. Penrose, and K. P. Tod, The metric and curvature properties of H-space. Oxford University preprint.Google Scholar
  9. [9]
    R. S. Ward, The self-dual Yang-Mills and Einstein equations. In Complex Manifold Techniques in Theoretical Physics, D. E. Lerner and P. D. Sommers eds., Pitman, 1979, pp. 12–34.Google Scholar
  10. [10]
    E. J. Flaherty, Hermitian and Kählerian Geometry in Relativity. Springer Verlag, 1976.Google Scholar
  11. [11]
    M. Ko, M. Ludvigsen, E. T. Newman, and K. P. Tod, The theory of H-space. Physics Reports 71, 51–139 (1981).CrossRefGoogle Scholar
  12. [12]
    J. D. Finley III and J. F. Plebański, The classification of all H-spaces admitting a Killing vector. J. Math. Phys. 20, 1938–1945 (1979).CrossRefGoogle Scholar
  13. [13]
    J. D. Finley III and J. F. Plebański, All algebraically degenerate H-spaces via HH-spaces. J. Math. Phys. 22, 667–674 (1981).CrossRefGoogle Scholar
  14. [14]
    R. S. Ward, A class of self-dual solutions of Einstein's equations. Proc. R. Soc. London A363, 289–295 (1978).Google Scholar
  15. [15]
    K. P. Tod and R. S. Ward, Self-dual metrics with self-dual Killing vectors. Proc. R. Soc. London A358, 411–427 (1979).Google Scholar
  16. [16]
    W. D. Curtis, D. E. Lerner, and F. R. Miller, Complex pp waves and the nonlinear graviton construction. J. Math. Phys. 19, 2024–2027 (1978).Google Scholar
  17. [17]
    M. G. Eastwood, R. Penrose, and R. O. Wells, Cohomology and massless fields. Commun. Math. Phys. 78, 305–351 (1981).Google Scholar
  18. [18]
    C. P. Boyer and J. F. Plebański, An infinite hierarchy of conservation laws and nonlinear superposition principles for self-dual Einstein spaces. Preprint: Comunicaciones Técnicas IIMAS (1983).Google Scholar
  19. [19]
    R. S. Ward, On self-dual gauge fields. Phys. Lett. 61A, 81–82 (1977).Google Scholar
  20. [20]
    M. F. Atiyah and R. S. Ward, Instantons and algebraic geometry, Commun. Math. Phys. 55, 117–124 (1977).Google Scholar
  21. [21]
    M. F. Atiyah, N. J. Hitchin, and I. M. Singer, Self-duality in four-dimensional Riemannian geometry. Proc. R. Soc. London A362, 425–461 (1978).Google Scholar
  22. [22]
    E. Witten, An interpretation of classical Yang-Mills theory. Phys. Lett. 77B, 394–398 (1978).Google Scholar
  23. [23]
    J. Isenberg, P. B. Yasskin, and P. S. Green, Non-self-dual gauge fields. Phys. Lett. 78B, 462–464 (1978).Google Scholar
  24. [24]
    J. Isenberg and P. B. Yasskin, Twistor description of non-self-dual Yang-Mills fields. In Complex Manifold Techniques in Theoretical Physics, D. E. Lerner and P. D. Sommers eds., Pitman, 1979, pp. 180–206.Google Scholar
  25. [25]
    Yu. I. Manin, Flag superpsaces and supersymmetric Yang-Mills equations. preprint.Google Scholar
  26. [26]
    C. R. LeBrun, Spaces of complex geodesics and related structures. Oxford University thesis (1980).Google Scholar
  27. [27]
    C. R. LeBrun, The first formal neighbourhood of ambitwistor space for curved space-time. Preprint IHES/M/81/54.Google Scholar
  28. [28]
    Yu. I. Manin and I. B. Penkov, Null geodesics of complex Einstein spaces. J. Funct. Anal. Appl. 16, 64–66 (1982).Google Scholar
  29. [29]
    J. F. Plebański and I. Robinson, Left-degenerate vacuum metrics. Phys. Rev. Lett. 37, 493–495 (1976).Google Scholar
  30. [30]
    R. Penrose, Structure of space-time. In Batelle Rencontres 1967, C. M. de Witt and J. A. Wheeler, eds., Benjamin, 1968, pp. 121–235.Google Scholar
  31. [31]
    R. O. Wells, Complex manifolds and mathematical physics. Bull. Amer. Math. Soc. (new series) 1, 296–336 (1979).Google Scholar
  32. [32]
    K. Kodaira, On stability of complex submanifolds of complex manifolds. Amer. J. Math. 85, 79–94 (1963).Google Scholar
  33. [33]
    A. Weinstein, Lagrangian submanifolds and hamiltonian systems. Ann. Math. 98, 377–410 (1973).Google Scholar
  34. [34]
    A. Weinstein, Symplectic manifolds and their lagrangian submanifolds. Adv. Math. 6, 329–346 (1971).Google Scholar
  35. [35]
    V. Guillemin and S. Sternberg, Geometric Asymptotics. Mathematical Surveys 14, American Mathematical Society, 1977.Google Scholar
  36. [36]
    I. N. Bernshtein and B. I. Rozenfel'd, Homogeneous spaces of infinite-dimensional Lie algebras and characteristic classes of foliations. Russ. Math. Surv., 107–141 (19).Google Scholar
  37. [37]
    K. Yano and S. Ishihara, Tangent and Cotangent Bundles. Marcel Dekker, 1973.Google Scholar
  38. [38]
    R. O. Wells, Differential Analysis on Complex Manifolds. Springer Verlag, 1980.Google Scholar
  39. [39]
    R. S. Ward, Self-dual space-times with cosmological constant. Commun. Math. Phys. 78, 1–17 (1980).Google Scholar
  40. [40]
    E. T. Newman, J. R. Porter, and K. P. Tod, Twistor surfaces and right-flat spaces. GRG 9, 1129–1142 (1978).Google Scholar
  41. [41]
    S. Hawking, Gravitational instantons. Phys. Lett. 60A, 81–83 (1977).Google Scholar
  42. [42]
    M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, The inverse scattering transform-Fourier analysis for nonlinear problems. Studies in Applied Mathematics 53, 249–315 (1974).Google Scholar
  43. [43]
    I. M. Krichever and S. P. Novikov, Holomorphic bundles over algebraic curves and nonlinear equations. Russ. Math. Surv. 35, 53–79 (1980).Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Charles P. Boyer
    • 1
  1. 1.Instituto de Investigaciones en Matemáticas Aplicadas y en SistemasUniversidad Nacional Autónoma de MéxicoUSA

Personalised recommendations