Advertisement

Comments on the inverse scattering transform and related nonlinear evolution equations

  • Mark J. Ablowitz
  • Athanassios S. Fokas
School
Part of the Lecture Notes in Physics book series (LNP, volume 189)

Keywords

Inverse Problem Analytic Problem Inverse Scattering Nonlinear Evolution Equation Fredholm Integral Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform. SIAM studies in Applied Mathematics, 1981.Google Scholar
  2. [2]
    T. R. Taha and M. J. Ablowitz: (i) On analytical and numerical aspects of certain nonlinear evolution equations. Part 1: Analytical. 1. N. S. #14 (preprint 1982); (ii) On analytical and numerical aspects of certain nonlinear evolution equations. Part II: numerical nonlinear Schrödinger equation. I. N. S. #15 (preprint 1982); (iii) On analytical and numerical aspects of certain nonlinear evolution equations. Part III: numerical Korteweg-de Vries equation. I. N. S. #16 (preprint 1982).Google Scholar
  3. [3]
    A. S. Fokas and M. J. Ablowitz, Lectures on the inverse scattering transform for multidimensional 2 + 1 problems. School of nonlinear phenomena, I. N. S. #28 (preprint, Dee 1982).Google Scholar
  4. [4]
    R. Beals and R. Coifman: (i) Scattering, transformations spectrales, et équations d'évolution non-lineaire. Seminaire Goulaouic-Meyer-Schwartz, 1980–1981, exp. 22, École Polytechnique, Palaiseau; (ii) Scattering and inverse scattering for first order systems. (preprint); (iii) Scattering, transformations spectrales, et équations d'évolution Nonlineaire. Seminaire Goulaouic-Meyer-Schwartz, 1981–1982, exp. 21, École Polytechnique, Palaiseau.Google Scholar
  5. [5]
    V. E. Zakharov and A. Shabat, Integration of thhe nonlinear equations of mathematical physics by the method of the inverse scattering problem. II. Funct. Anal. Appl. 13, 166–174 (1979).Google Scholar
  6. [6]
    R. Beals, The inverse problem for ordinary differential operators on the line. (Preprint).Google Scholar
  7. [7]
    Y. Kodama, J. Satsuma, and M. J. Ablowitz, Nonlinear intermediate long wave equation: analysis and method of solution. Phys. Rev. Lett. 46, 687–690 (1981);Y. Kodama, M. J. Ablowitz and J. Satsuma, Direct and inverse scattering problems of nonlinear intermediate long wave equations. J. Math. Phys. 23, 564–576 (1982).CrossRefGoogle Scholar
  8. [8]
    A. S. Fokas and M. J. Ablowitz, The inverse scattering transform for the Benjamin-Ono equation —A pivot to multidimensional problems. Stud. Appl. Math. 68, 1–10 (1983).Google Scholar
  9. [9]
    A. S. Fokas and M. J. Ablowitz, On the Inverse Scattering and Direct Linearizing Transforms for the Kadomtsev-Petviashvili Equation. Phys. Lett. 94A, 67–70 (1983).Google Scholar
  10. [10]
    M. J. Ablowitz, D. Bar Yaacov, and A. S. Fokas, On the Inverse Scattering Transform for the Kadomtsev-Petviashvili Equation. I. N. S. #21, Stud. Appl. Math. (to be published).Google Scholar
  11. [11]
    S. V. Manakov, The inverse scattering transform for the time-dependent Schrödinger equation and the Kadomtsev-Petviashvili equation. Physics D 3, 420 (1981).Google Scholar
  12. [12]
    (i)A. S. Fokas, On the inverse scattering of first order systems in the plane related to nonlinear multi dimensional equations. I. N. S. #23 (preprint, Dec 1982); (ii) A. S. Fokas and M. J. Ablowitz, On the inverse scattering transform of multidimensional nonlinear equations related to first order systems in the plane. I. N. S. #24 (preprint, Jan 1983).Google Scholar
  13. [13]
    D. J. Kaup, The inverse scattering solution for the full three-dimensional three-wave resonant interaction. Physics D 1, 45–67 (1980).Google Scholar
  14. [14](i)
    N. I. Muskhelishvili, in Singular Integral Equations. J. Radok ed., Noordhoff, Groningen 1953Google Scholar
  15. [14](ii)
    F. D. Gakhov, in Boundary Value Problems, I. N. Sneddon ed., Pergamon, New York, 1966, Vol. 85Google Scholar
  16. [14](iii)
    N. P. Vekua, in Systems of Singular Integral Equations, J. H. Ferziger ed., Gordon and Breach, New York, 1967.Google Scholar
  17. [15]
    A. S. Fokas and M. J. Ablowitz, Linearization of the Korteweg-de Vries and Painlevé II equations. Phy. Rev. Lett. 18, 1096–1100 (1981).CrossRefGoogle Scholar
  18. [16]
    A. S. Fokas and M. J. Ablowitz, On a unified approach to transformations and elementary solutions of Pailevé equations. J. Math. Phys. 11, 2033–2042 (1982).CrossRefGoogle Scholar
  19. [17]
    P. M. Santini, M. J. Ablowitz, and A. S. Fokas, On the limit from the intermediate long wave equation to the Benjamin-Ono equation. (Preprint, 1983).Google Scholar
  20. [18]
    M. J. Ablowitz, A. S. Fokas, and R. L. Anderson, The direct linearizing transform and the Benjamin-Ono equation. Phys. Lett. 93A, 375–378 (1983).Google Scholar
  21. [19]
    A. S. Fokas and M. J. Ablowitz, On the initial value problem of the second Painlevé transcendent. I. N. S. #31 (preprint, 1983).Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Mark J. Ablowitz
    • 1
  • Athanassios S. Fokas
    • 1
  1. 1.Department of Mathematics and Computer ScienceClarkson College of TechnologyPotsdamUSA

Personalised recommendations