Prefix and perfect languages

  • J. Beauquier
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 159)


This paper is devoted to the study of languages satisfying the prefixity property and of those that are the star of the previous ones.

It is proved that the respective families PREF and PERF are closed under intersection duos and that the duos of regular sets, of linear and of one-counter languages are non-principal.


Closure Property Family Pref Prefix Code Linear Language Deterministic Pushdown Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Autebert J.M. — Non-principalité du cylindre des langages à compteur, Math. Systems Theory, 11, 157–167, 1977.CrossRefGoogle Scholar
  2. [2]
    Autebert J.M., Beauquier J., Boasson L., Senizergues G. — Remarques sur les langages de parenthèses, submitted to Acta Informatica, (available in LITP report).Google Scholar
  3. [3]
    Berstel J. — Transductions and context-free languages, Teubner Verlag — 1980.Google Scholar
  4. [4]
    Boasson L. & Nivat M. — Le cylindre des langages linéaires, Math. Syst. Theory 11, 147–155, 1977.CrossRefGoogle Scholar
  5. [5]
    Cesari Y. — Sur un algorithme donnant les codes bipréfixes finis, Math. Syst. Theory 6 (3), 221–225, 1972.CrossRefGoogle Scholar
  6. [6]
    Eilenberg S. — Automata, Languages and Machines, Vol. A, Academic Press, New York and London, 1974.Google Scholar
  7. [7]
    Ginsburg S. — Algebraic and automata — theoretic properties of context-free languages. — North Holland, 1975.Google Scholar
  8. [8]
    Greibach S. — The hardest context-free language, SIAM Journal of Comp. 2, 301–304, 1973.Google Scholar
  9. [9]
    Harrison M. — Introduction to formal languages theory, Addison-Wesley Reading, Mass, 1978.Google Scholar
  10. [10]
    Nivat M. & Perrot J.F. — Une généralisation du monoïde bicyclique, C.R. Acad. Sci. Paris, 217 A, 824–827, 1970.Google Scholar
  11. [11]
    Perrin D. — La transitivité du groupe d'un code bipréfixe fini, Math. Z. 153, 283–287, 1977.CrossRefGoogle Scholar
  12. [12]
    Perrot J.F. — Groupes de permutations associés aux codes préfixes finis, in A. Lentîn (Ed.), Permutations, Gauthiers-Villars, Mouton, Paris, 19–35, 1974.Google Scholar
  13. [13]
    Schützenberger M.P. — On the synchronization properties of certain prefix codes, Inf. Control 7, 23–36, 1964.CrossRefGoogle Scholar
  14. [14]
    Takahashi M. — Nest sets and relativized closure properties, to appear in Theoretical Comp. Sci.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • J. Beauquier
    • 1
  1. 1.L.I.T.P. and Université de Picardie — U.E.R. de MathématiquesAmiens Cedex

Personalised recommendations