Advertisement

Efficient algorithms for finding maximal matching in graphs

  • Zvi Galil
Invited Lectures
Part of the Lecture Notes in Computer Science book series (LNCS, volume 159)

Abstract

The paper surveys the techniques used for designing the most efficient algorithms for finding a maximal (cardinality or weighted) matching in (general or bipartite) graphs. It also lists some open problems concerning possible improvements and the existence of fast parallel algorithms for these problems.

Key words

Shmathematics algorithmic tools data structures monsters matching polygamy the asexual case the assignment problem moonlighting augmenting path ET blossoms shrink The Main Theorem of Botany The ACM Longest Paper Award generalized priority queue d-heap warm-up duality primaldual sexual discrimination affirmative action joint income tax return 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AHU]
    A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, Mass., 1974.Google Scholar
  2. [AV]
    D. Angluin and L.G. Valiant, Fast probabilistic algorithms for Hamiltonian paths and matchings, JCSS 18 (1979), 144–193.Google Scholar
  3. [BGH]
    A. Borodin, J. von zur Gathen and J.E. Hopcroft, Fast parallel and gcd computations, Proc. 23rd IEEE Symp. on FOCS (1982), 64–71.Google Scholar
  4. [CH]
    R. Cole and J.E. Hopcroft, On edge coloring bipartite graphs, SIAM J. on Computing 11 (1982), 540–546.CrossRefGoogle Scholar
  5. [D]
    E.W. Dijkstra, A note on two problems in connexion with graphs, Numer. Math. 1 (1959), 263–271.CrossRefGoogle Scholar
  6. [Di]
    E.A. Dinic, Algorithm for solution of a problem of maximal flow in a network with power estimation, Soviet Math. Dokl. 11 (1970), 1277–1280.Google Scholar
  7. [E1]
    J. Edmonds, Path, trees and flowers, Canad. J. Math. 17 (1965), 449–467.Google Scholar
  8. [E2]
    J. Edmonds, Maximum matching and a polyhedron with 0,1 vertices, J. Res. NBS, 698 (April–June 1965), 125–130.Google Scholar
  9. [EK]
    S. Even and O. Kariv, An O(n2.5) algorithm for maximum matching in graphs, Proc. 16th IEEE Symp. on FOCS (1975), 100–112.Google Scholar
  10. [ET]
    S. Even and R.E. Tarjan, Network flow and testing graph connectivity, SIAM J. on Comput. 4 (1975), 507–518.CrossRefGoogle Scholar
  11. [FF]
    L.R. Ford, and D.R. Fulkerson, Maximal flow through a network, Canadian J. Math. 8, 3 (1956), 399–404.Google Scholar
  12. [G1]
    H.N. Gabow, Implementation of algorithms for maximum matching on nonbipartite graphs, Ph.D. Thesis, Department of Computer Science, Stanford University, 1974.Google Scholar
  13. [G2]
    H.N. Gabow, An efficient implementation of Edmonds' algorithm for maximum matching on graphs, J. ACM 23 (1976), 221–234.CrossRefGoogle Scholar
  14. [G3]
    H.N. Gabow, Using Euler partitions to edge color bipartite multigraphs, International J. of Computer and Information Sciences 5 (1976) 345–355.CrossRefGoogle Scholar
  15. [G4]
    H.N. Gabow, An efficient reduction technique for degree-constrained subgraph and bidirection network flow problems, to appear in Proc. 14th ACM STOC.Google Scholar
  16. [Ga]
    Z. Galil, An O(E2/3V5/3) algorithm for the maximal flow problem, Acta Information 14 (1980), 221–242.Google Scholar
  17. [GG]
    O. Gabber and Z. Galil, Explicit construction of linear-sized super concentrators, JCSS 22 (1981), 407–420.Google Scholar
  18. [GMG]
    Z. Galil, S. Micali and H.N. Gabow, Priority queues with variable priority and an O(EV log V) algorithm for finding a maximal weighted matching in general graphs, Proc. 23rd IEEE Symp. on FOCS (1982), 255–261.Google Scholar
  19. [GT]
    H.N. Gabow and R.E. Tarjan, A linear time algorithm for a special case of disjoint set union, manuscript, July 1982 (to ppear in Proc. 14th ACM STOC).Google Scholar
  20. [GSS]
    L. Goldschlager, R. Shaw, and J. Staples, the maximum flow problem is log space complete for P, TCS 21 (1982), 105–111.CrossRefGoogle Scholar
  21. [IMM]
    M. Iri, K. Murota and S. Matsui, Linear time approximation algorithms for finding the minimum weight perfect matching on a plane, Info. Proc. Letters 12 (1981), 206–209.CrossRefGoogle Scholar
  22. [J]
    D. Johnson, Efficient algorithms for shortest paths in sparse graphs, J. ACM 24 (1977), 1–13.CrossRefGoogle Scholar
  23. [K]
    O. Kariv, An O(n2.5) algorithm for maximal matching in general graphs, Ph.D. Thesis, Department of Applied Mathematics, The Weizman Inst., Rehovot, Israel, 1976.Google Scholar
  24. [Ka]
    R.M. Karp, An algorithm to solve the assignment problem in expected time O(mn log n), Network 10, 2 (1980), 143–152.Google Scholar
  25. [Kn]
    D.E. Knuth, The Art of Computer Programming, Vol 3: Sorting and Searching, Addison-Wesley, Reading, Mass., 1973.Google Scholar
  26. [KM]
    T. Kameda and I. Munro, A O(|V|·|E|) algorithm for maximum matching of graphs, Computing 12 (1974), 91–98.Google Scholar
  27. [KS]
    R.M. Karp and M. Sipser, Maximal matchings in sparse graphs, Proc. 22nd IEEE Symp. on FOCS (1981), 364–375.Google Scholar
  28. [L]
    E.L. Lawler, Combinatorial Optimization: Networds and Matroids, Holt, Rienhard and Winston, New York, 1976.Google Scholar
  29. [MV]
    S. Micali and V.V. Vazirani, An O(√|V|·|E|) algorithm for finding maximum matching in general graphs, Proc. 21st IEEE Symp. on FOCS (1980), 17–27.Google Scholar
  30. [S]
    A.O. Slisenko, Recognition of palindromes by multihead Turing machines, in Problems in the Constructive Trend in Mathematics, VI (Proc. of the Steklov Institute of Mathematics 129), V.P. Orevkov and N.A. Sanin (eds.), Academy of Sciences of the USSR (1973), 30–202; English translation by R.H. Silverman, American Math. Society, Providence, Rhode Island (1976), 25–208.Google Scholar
  31. [T1]
    R.E. Tarjan, Efficiency of a good but not linear set union algorithm, J. ACM 22, (1975), 215–225.CrossRefGoogle Scholar
  32. [T2]
    R.E. Tarjan, Finding optimum branchings, Network 7 (1977), 25–35.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Zvi Galil
    • 1
  1. 1.Columbia University and Tel-Aviv UniversityIsrael

Personalised recommendations