Alternating tree automata

  • Giora Slutzki
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 159)


Computation Tree Finite Automaton Input Tree Tree Automaton Tree Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B]
    Berman, L. Precise Bounds for Presburger Arithmetic and the Reals with Addition. 18th Symposium FOCS, 1977, pp. 95–99.Google Scholar
  2. [CS]
    Chandra, A. K. and Stockmeyer, L. J. Alternation. 17th Symposium FOCS, 1976, pp. 98–108.Google Scholar
  3. [CKS]
    Chandra, A. K., Kozen, D. C. and Stockmeyer, L. J. Alternation. JACM 28 (1981), pp. 114–133.CrossRefGoogle Scholar
  4. [D]
    Doner, J. Tree Acceptors and Some of Their Applications. JCSS 4 (1970), pp. 406–451.Google Scholar
  5. [E]
    Engelfriet, J. Tree Automata and Tree Grammars. Lecture Notes DAIMI FN-10, University of Aarhus, Denmark, 1975.Google Scholar
  6. [E1]
    Engelfriet, J. Bottom-up and Top-down Tree Transformations—A Comparison. Math. Systems Theory 9 (1975), pp. 193–231.CrossRefGoogle Scholar
  7. [ERS]
    Engelfriet, J. Rozenberg, G. and Slutzki, G. Tree Transducers, L-Systems, and Two-way Machines. JCSS 20 (1980), pp. 150–202.Google Scholar
  8. [FL]
    Fischer, M. J. and Ladner, R. E. Propositional Modal Logic of Programs. 9th ACM STOC, 1977, pp. 286–294.Google Scholar
  9. [K]
    Kozen, D. C. On Parallelism in Turing Machines. 17th Symposium FOCS, 1976, pp. 89–97.Google Scholar
  10. [K1]
    Kozen, D. C. Complexity of Boolean Algebras. Theoretical Computer Science 70 (1980), pp. 221–247.CrossRefGoogle Scholar
  11. [Ka]
    Kamimura, T. Tree Automata and Attribute Grammars. TR-82-1, Dept. of Comp. Sci., Univ. of Kansas, Lawrence, Kansas, 66045, USA.Google Scholar
  12. [KAI]
    Kasai, T., Adachi, A. and Iwata, S. Classes of Pebble Games and Complete Problems. SIAM Journal of Computing 8 (1979), pp. 574–586.CrossRefGoogle Scholar
  13. [KS]
    Kamimura, T. and Slutzki, G. Parallel and Two-way Automata on Directed Ordered Acyclic. Graphs. Information and Control 49 (1981), pp. 10–51.CrossRefGoogle Scholar
  14. [LLS]
    Ladner, R. E., Lipton, R. J. and Stockmeyer, L. J. Alternating Pushdown Automata. 19th Symposium FOCS, 1978, pp. 92–106.Google Scholar
  15. [MM]
    Magidor, M. and Moran, G. Finite Automata over Finite Trees. TR-69-30, Dept. of Math., Hebrew Univ., Jerusalem, Israel.Google Scholar
  16. [R]
    Rabin, M. O. Matheamtical Theory of Automata. Proc. Symp. Appl. Math., Vol. 19, AMS, Providence, R. I., 1968, pp. 153–175.Google Scholar
  17. [S]
    Slutzki, G. Alternating, Nondeterministic and Universal Pushdown Automata. TR-82-2, Dept. of Comp. Sci., Univ. of Kansas, Lawrence, Kansas, 66045, USA.Google Scholar
  18. [SC]
    Stockmeyer, L. J. and Chandra, A. K. Provably Difficult Combinatorial Games. SIAM Journal of Computing 8 (1979), pp. 151–174.CrossRefGoogle Scholar
  19. [T]
    Thatcher, J. W. Tree Automata: informal survey. In "Currents in the Theory of Computing" (A. V. Aho, Ed.), Prentice-Hall, Englewood Cliffs, N. J., pp. 143–172.Google Scholar
  20. [TW]
    Thatcher, J. W. and Wright, J. B. Generalized Finite Automate Theory with an Application to a Decision Problem of Second Order Logic. Math. Systems Theory 2 (1968), pp. 57–81.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Giora Slutzki
    • 1
  1. 1.Department of Computer ScienceUniversity of KansasLawrence

Personalised recommendations