Advertisement

Some further approximation algorithms for the vertex cover problem

  • B. Monien
  • E. Speckenmeyer
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 159)

Abstract

In this paper we describe an approximation algorihm for the vertex cover problem which has a worst case ratio Δ strictly smaller than 2 for graphs which don't have too many nodes (for example Δ≤1.9 if |V|≤1o13). Furthermore we present algorithms which improve in the case of degree bounded graphs the worst case ratios known up to now.

Keywords

Approximation Algorithm Bipartite Graph Regular Graph Vertex Cover Maximum Match 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    R. Bar-Yehuda and S. Even: A linear-time approximation algorithm for the weighted vertex cover problem, J. Algorithms 2 (1982), 198–203CrossRefGoogle Scholar
  2. (2).
    R. Bar-Yehuda and S. Even: On Approximating a Vertex Cover for Planar Graphs, Proc. 14th Annual ACM Symposium on Theory of Comuting (1982), 303–309Google Scholar
  3. (3).
    P. Erdös and T. Gallai: ON THE MINIMAL NUMBER OF VERTICES REPRESENTING THE EDGES OF A GRAPH, MAGYAR TUDOMÁNYOS AKADÉMIA MATEMATIKAI KUTATO INTÉZETÉNEK KÖZLEMÉNYEI VI. EVFOLYAM 1961, 181–203Google Scholar
  4. (4).
    S. Fajtlowicz: On the size of independent sets in graphs, Proc. 9th S.E. Conf. Combinatorics, Graph Theory and Computing (1978), 269–274Google Scholar
  5. (5).
    D. Hochbaum: Efficient Bounds for the Stable Set, Vertex Cover and Set Packing Problems, W.P. # 50-80-81, GSIA, Carnegie-Mellon University, May 1981Google Scholar
  6. (6).
    G. Hopkins and W. Staton: Girth and Independence Ratio, Canad. Math. Bull. 25 (1982), 179–186Google Scholar
  7. (7).
    J.E. Hopcroft and R.M. Karp: An n5/2 Algorithm for Maximal Matchings in Bipartite graphs, SIAM J. Comput. 4 (1973), 225–231CrossRefGoogle Scholar
  8. (8).
    D. König: Theorie der endlichen und unendlichen Graphen, Leipzig, 1936Google Scholar
  9. (9).
    B. Monien: The Complexity of Determining a Shortest Cycle of even Length, Proc. Workshop "Graphtheoretic Concepts in Computer Science, Hanser Verlag, 1982Google Scholar
  10. (10).
    G.L. Nemhauser and L.E. Trotter: Vertex Packings: Structural Properties and Algorithms, Mathematical Programming 8 (1975), 232–248CrossRefGoogle Scholar
  11. (11).
    E. Speckenmeyer: Covering all circuits in undirected graphs of degree 3 by a minimal number of vertices, Technical Report, Universität Paderborn, 1982Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • B. Monien
    • 1
  • E. Speckenmeyer
    • 1
  1. 1.University of PaderbornGermany

Personalised recommendations