Advertisement

Applicative information systems

  • M. Coppo
  • M. Dezani
  • G. Longo
Invited Lectures
Part of the Lecture Notes in Computer Science book series (LNCS, volume 159)

Keywords

Finite Subset Effective Operator Recursive Function Approximable Mapping Computable Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bar [ 1981 ]
    H. Barendregt, The λ-calculus: its syntax and semantics. North-Holland, 1981.Google Scholar
  2. CDHL [ 1982 ]
    M. Coppo, M. Dezani, F. Honsell, G. Longo, ”Extended Type Structure and Filter lambda models” Logic Colloquium '82 (Lolli, Longo, Marcja eds.) North-Holland, 1983.Google Scholar
  3. Er [ 1976 ]
    Yu.L. Ershov, ”Model C of partial continuous functionals” in Logic Colloquium '76 (Gandy, Hyland eds) Nort-Holland, 1977.Google Scholar
  4. GL [ 1982 ]
    P. Giannini, G. Longo, ”Effectively given domains and λ-calcul semantics” Revised version, ISI-Nota Scientifica (1982).Google Scholar
  5. LS [ 1981 ]
    D. Lehmann, M. Smyth, ‘Algebraic Specification of Data Types: A synthetic Approach’ Mathematical System Theory, 14 (1981), 97–139.CrossRefGoogle Scholar
  6. Mil [ 1978 ]
    R. Milner, ”A theory of type polymorphism in programming” Journal of Computer and System Sciences, 3 (1978), 348–375.CrossRefGoogle Scholar
  7. Plo [ 1975 ]
    G. Plotkin, ”Call-by-name, call-by-value and the λ-calculus” Theoretical Computer Science 1 (1975), 125–159.CrossRefGoogle Scholar
  8. PS [ 1982 ]
    G. Plotkin, M. Smyth, ”The cathegory-theoretic solution of recursive domain equations” Internal Report University of Edinburgh (1982), (To appear in SIAM Journal of Computing).Google Scholar
  9. Ro [ 1967 ]
    H. Rogers, Theory of recursive functions and effective computability, Mc-Graw-Hill, 1967.Google Scholar
  10. Scott [ 1972 ]
    D.S. Scott, ”Continuous Lattices”, Springer Lecture Notes in Mathematics, vol. 274, (1972), 97–136.Google Scholar
  11. Scott [ 1976 ]
    D.S. Scott, ”Data types as lattices”, SIAM Journal of Computing 5 (1976), 522–587.CrossRefGoogle Scholar
  12. Scott [ 1981 ]
    D.S. Scott, Lectures on a mathematical theory of computation. Oxford University Computing Laboratory, Technical Monograph PRG-19 (1981).Google Scholar
  13. Scott [ 1982 ]
    D.S. Scott, ”Domains for Denotational Semantics (updated version)”. Proceedings of ICALP '82, LNCS 140, Springer-Verlag, Berlin (1982).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • M. Coppo
    • 1
  • M. Dezani
    • 1
  • G. Longo
    • 2
  1. 1.Dipartimento di InformaticaUniversità di TorinoItaly
  2. 2.Dipartimento di InformaticaUniversità di PisaItaly

Personalised recommendations