Electron gas models and density functional theory

  • José Luis Gázquez
Part of the Lecture Notes in Physics book series (LNP, volume 187)


A functional for representing the kinetic and exchange energies of the ground state of an N electron atom or ion in terms of its electron density is derived by: (1) considering explicitly the variation of the charge density in an atom, and (2) approximating the pair correlation function for parallel spin electrons by that of a uniform free-electron gas, but including the corrections to the momentum at the Fermi level and the appropriate boundary conditions that result from taking into account that the number of electrons in an atom is finite. The first consideration leads in a natural way to the full Weizsacker correction in the kinetic energy expression, while the second consideration yields the Thomas-Fermi term (kinetic) and the Dirac plus the Fermi-Amaldi terms (exchange) multiplied by different functions of N. The quality of such functional is analyzed using Hartree-Fock densities.


Euler Equation Pair Correlation Function Kinetic Energy Density Gradient Expansion Kinetic Energy Expression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.H. Thomas, Proc. Cambridge Philos. Soc. 23, 542 (1927).MATHCrossRefGoogle Scholar
  2. 2.
    E. Fermi, Z. Phys. 48, 73 (1928).CrossRefADSGoogle Scholar
  3. 3. a)
    For a detailed discussion on the Thomas-Fermi model and its various extensions, see: P. Gombas, Die Statistische Theorie des Atoms und ihre Anwendung (Springer, Vienna, 1949)Google Scholar
  4. 3. b)
    P. Gombas, Statistische Behandlung des Atoms, in Handbuch der Physik, Bd. 36 (Springer, Vienna, 1956).Google Scholar
  5. 4.
    N.H. March, Adv. Phys. 6, 1 (1957).ADSGoogle Scholar
  6. 5.
    E.H. Lieb and B. Simon, Phys. Rev. Lett. 31, 681 (1973).CrossRefADSGoogle Scholar
  7. 6.
    E. Teller, Rev. Mod. Phys. 34, 627 (1962).MATHCrossRefADSGoogle Scholar
  8. 7.
    N.L. Balázs, Phys. Rev. 156, 42 (1967).CrossRefADSGoogle Scholar
  9. 8.
    P.A.M. Dirac, Proc. Cambridge Philos Soc. 26, 376 (1930).MATHCrossRefGoogle Scholar
  10. 9.
    C.F. v. Weizsacker, Z. Phys. 96, 431 (1935).CrossRefADSGoogle Scholar
  11. 10.
    D.A. Kirzhnits, Zh. Eksp. Teor. Fiz. 32, 117 (1957)Google Scholar
  12. 10a.
    , [Sov. Phys. — JETP 5, 64 (1957)MATHMathSciNetGoogle Scholar
  13. 11.
    P. Hohenberg and W. Kohn, Phys. Rev. B136, 864 (1964).CrossRefADSMathSciNetGoogle Scholar
  14. 11a.
    M. Levy, Proc. Natl. Acad. Sci. USA 76, 6062 (1979).CrossRefADSGoogle Scholar
  15. 12.
    Y.S. Kim and R.G. Gordon, J. Chem. Phys. 60, 1842 (1974).CrossRefADSGoogle Scholar
  16. 13.
    C.C. Shih, Phys. Rev. A14, 919 (1976).ADSGoogle Scholar
  17. 14.
    W.P. Wang, R.G. Parr, D.R. Murphy and G.A. Henderson, Chem. Phys. Lett. 43, 409 (1976).CrossRefADSGoogle Scholar
  18. 15.
    D.R. Murphy and W.P. Wang, J. Chem. Phys. 72, 429 (1980).CrossRefADSGoogle Scholar
  19. 16.
    C.H. Hodges, Can. J. Phys. 51, 1428 (1973).ADSGoogle Scholar
  20. 17.
    Y. Tal and R.F.W. Bader, Int. J. Quantum Chem. S12, 153 (1978).Google Scholar
  21. 18.
    D.R. Murphy, Doctoral Dissertation, Dept. of Chemistry, University of North Carolina (1979).Google Scholar
  22. 19.
    F. Herman, J.P. Van Dyke, and I.B. Ortenburger, Phys. Rev. Lett. 22, 807 (1969); F. Herman, I.B. Ortenburger and J.P. Van Dyke, Int. J. Quantum Chem. S3, 827 (1970).CrossRefADSGoogle Scholar
  23. 20.
    J.L. Gázquez, E. Ortiz, and J. Keller, Int. J. Quantum Chem. S13, 377 (1979).Google Scholar
  24. 21.
    C.C. Shih, D.R. Murphy and W.P. Wang, J. Chem. Phys. 73, 1340 (1980).CrossRefADSGoogle Scholar
  25. 22.
    W.P. Wang and R.G. Parr, Phys. Rev. A16, 891 (1977).ADSGoogle Scholar
  26. 23.
    E. Hernández and J.L. Gázquez, Phys. Rev. A25, 107 (1982).ADSGoogle Scholar
  27. 24.
    P.K. Acharya, L.J. Bartolotti, S.B. Sears and R.G. Parr, Proc. Natl. Acad. Sci USA 77, 6978 (1980).CrossRefADSGoogle Scholar
  28. 25.
    S.B. Sears, R.G. Parr, and U. Dinur, Isr. J. Chem. 19, 165 (1980).Google Scholar
  29. 26.
    J.L. Gázquez and E.V. Ludeña, Chem. Phys. Lett. 83, 145 (1981).CrossRefADSGoogle Scholar
  30. 27.
    J.L. Gázquez and J. Robles, J. Chem. Phys. 76, 1467 (1982).CrossRefADSGoogle Scholar
  31. 28.
    H. Nakatsuji, Phys. Rev. A14, 41 (1976).ADSGoogle Scholar
  32. 29.
    L. Cohen and C. Frishberg, J: Chem. Phys. 65, 4234 (1976)CrossRefADSGoogle Scholar
  33. 29a.
    L. Cohen and C. Frishberg, Phys. Rev. A13, 927 (1976)ADSGoogle Scholar
  34. 29b.
    C. Frishberg, L. Cohen and P. Blumenau, Int. J. Quantum Chem. S14, 161 (1980).Google Scholar
  35. 30.
    P.W. Payne, Proc. Natl. Acad. Sci. USA 77, 6293 (1980).CrossRefADSGoogle Scholar
  36. 31.
    R. McWeeny, Rev. Mod. Phys. 32, 335 (1960).CrossRefADSMathSciNetGoogle Scholar
  37. 32.
    J.C. Slater, Quantum Theory of Molecules and Solids, (McGraw-Hill, New York), Vol. 4 (1974).Google Scholar
  38. 33.
    J.P. Perdew and A. Zunger, Phys. Rev. B23, 5048 (1981).ADSGoogle Scholar
  39. 34.
    E. Fermi and E. Amaldi, Mem. Acad. Ital. 6, 117 (1934).Google Scholar
  40. 35.
    R.F.W. Bader and H.J.T. Preston, Int. J. Quantum Chem. 3, 327 (1969).CrossRefADSGoogle Scholar
  41. 36.
    E.V. Ludeña, “On the Nature of the Correction to the Weizsacker Term”, submitted for publication in J. Chem. Phys.Google Scholar
  42. 37.
    B.Y. Tong, Phys. Rev. A4, 1375 (1971).ADSGoogle Scholar
  43. 38.
    J.A. Alonso and L.A. Girifalco, Phys. Rev. B17, 3735 (1978). These authors used a similar approach to the one presented here, but did not consider finiteness corrections.ADSGoogle Scholar
  44. 39.
    O. Gunnarson, M. Jonson, and B. Lundqvist, Phys. Lett. A59, 177 (1976).ADSGoogle Scholar
  45. 40.
    J. Schwinger, Phys. Rev. A22, 1827 (1980).ADSMathSciNetGoogle Scholar
  46. 41.
    E. Clementi and C. Roetti, At. Data Nucl. Data Tables 14, 177 (1974).CrossRefADSGoogle Scholar
  47. 42.
    I. Lindgren and A. Rosén, Case Studies in Atomic Physics 4, 93 (1974).Google Scholar
  48. 43.
    J.L. Gázquez and E. Ortiz, Chem. Phys. Lett. 77, 186 (1981).CrossRefADSGoogle Scholar
  49. 44.
    S.R. Gadre, L.J. Bartolotti, and N.C. Handy, J. Chem. Phys. 72, 1034 (1980).CrossRefADSGoogle Scholar
  50. 45.
    K. Schwarz, Phys. Rev. B5, 2466 (1972); M. Berrondo and O. Goscinski, Phys. Rev. 184, 10 (1969).ADSGoogle Scholar
  51. 46.
    M.S. Gopinathan, M.A. Whitehead and R. Bogdanović, Phys. Rev. A14, 1 (1976).ADSGoogle Scholar
  52. 47.
    J.L. Gázquez and J. Keller, Phys. Rev. A16, 1358 (1977).ADSGoogle Scholar
  53. 48.
    W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).CrossRefADSMathSciNetGoogle Scholar
  54. 49.
    J.L. Gázquez, E. Ortiz and J. Robles, to be published.Google Scholar
  55. 50.
    S. Golden, J. Phys. Chem. 83, 1388 (1979); S. Golden, Int. J. Quantum Chem. S14, 135 (1980).CrossRefGoogle Scholar
  56. 51.
    I.M. Gelfand and S.V. Fomin, Calculus of Variations (Prentice-Hall, Englewoods Cliffs, New Jersey) 1963.Google Scholar
  57. 52.
    J. Keller, C. Keller and C. Amador, Lecture Notes in Physics (Springer-Verlag) 142, 364 (1981).ADSCrossRefGoogle Scholar
  58. 53.
    M. Berrondo and A. Flores-Riveros, J. Chem. Phys. 72, 6299 (1980).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • José Luis Gázquez
    • 1
  1. 1.D.E.Pg., Facultad de QuímícaUniversidad Nacional Autónoma de MéxicoMéxico, D.F.

Personalised recommendations