Advertisement

Properties of one-matrix energy functionals

  • Robert A. Donnelly
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 187)

Keywords

Ionization Potential Occupation Number Orbital Energy Reduce Density Matrix Energy Functional 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    An N-representable density is one which could be exhibited by a fermion system. A V-representable density is one which is in one-to-one correspondence with some local potential v.Google Scholar
  3. 3.
    T.L. Gilbert, Phys. Rev. 12, B2111 (1975).CrossRefADSGoogle Scholar
  4. 4.
    M. Berrondo and O. Goscinski, Int. J. Quantum Chem. S9, 67 (1975).Google Scholar
  5. 5.
    R.A. Donnelly and R.G. Parr, J. Chem. Phys. 69, 4431 (1078).CrossRefADSGoogle Scholar
  6. 6.
    R.A. Donnelly, J. Chem. Phys. 71, 2874 (1979).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    M. Levy, Proc. Natl. Acad. Sci. USA 76, 6062 (1979).CrossRefADSGoogle Scholar
  8. 8.
    S. Valone, private communication of a manuscript for publication in Phys. Rev. A. Google Scholar
  9. 9.
    S. Valone, J. Chem. Phys. 73, 1344 (1980).CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    J.E. Harriman, Phys. Rev. 17, A1249 (1978), ibid., A1257ADSGoogle Scholar
  11. 11.
    J. Katriel, C.J. Appellof, and E.R. Davidson, Int. J. Quantum Chem. 19, 293 (1981).CrossRefGoogle Scholar
  12. 12.
    H. Primas and M. Sleicher, Int. J. Quantum Chem. 9, 855 (1975).CrossRefGoogle Scholar
  13. 13.
    E. Kryachko, Int. J. Quantum Chem. 18, 1029 (1980).CrossRefMathSciNetGoogle Scholar
  14. 14.
    R.G. Parr, R.A. Donnelly, M. Levy and W.E. Palke, J. Chem. Phys. 68, 3801 (1978).CrossRefADSGoogle Scholar
  15. 15.
    R.T. Sanderson, Science 121, 207 (1055).CrossRefADSGoogle Scholar
  16. 16.
    J.C. Slater, Phys. Rev. 81, 385 (1951).MATHCrossRefADSGoogle Scholar
  17. 17.
    A.J. Coleman, Rev. Mod. Phys. 35, 668 (1963)CrossRefADSGoogle Scholar
  18. 17a.
    D.W. Smith, Phys. Rev. 147, 896 (1966).CrossRefADSGoogle Scholar
  19. 18.
    P.-O. Löwdin, Phys. Rev. 97, 1474 (1955).CrossRefADSMathSciNetGoogle Scholar
  20. 19.
    R. McWeeny, Rev. Mod. Phys. 32, 335 (1960), P.A.M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930).CrossRefADSMathSciNetGoogle Scholar
  21. 20.
    K. Husimi, Physico-Mathematical Society of Japan, Proc. Ser. 3 22, 264 (1940).MATHGoogle Scholar
  22. 21.
    J. Hinze and H.H. Jaffe, J. Am. Chem. Soc. 84, 540 (1962), J. Hinze, M.A. Whitehead, and H.H. Jaffe, ibid., 85, 148 (1963).CrossRefGoogle Scholar
  23. 22.
    D.W. Smith and O.W. Day, J. Chem. Phys. 62, 113 (1975).CrossRefADSGoogle Scholar
  24. 23.
    M.M. Morell, R.G. Parr, and M. Levy, J. Chem. Phys. 62, 549 (1975).CrossRefADSGoogle Scholar
  25. 24.
    B.C. Carson and J.M. Keller, Phys. Rev. 121, 659 (1961).CrossRefADSMathSciNetGoogle Scholar
  26. 25.
    R.A. Donnelly, manuscript submitted to Int. J. Quantum Chem. Google Scholar
  27. 26.
    The eigenvalues of a commuting pair of matrices can be related by an interpolating polynomial. Thus the eigenvalues of one matrix are functions of the eigenvalues of the other. This mapping is one-to-one in the case that the eigenvalues of one of the commuting pair are non-degenerate.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Robert A. Donnelly
    • 1
  1. 1.Auburn UniversityUSA

Personalised recommendations