Advertisement

Metrical and ordered properties of powerdomains

  • S. Tison
  • M. Dauchet
  • G. Comyn
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 158)

Abstract

Many papers have been devoted to the study of the semantics of nondeterminism and proposed domains inside a powerset P(D) which inherit their properties from the domain D. We try to put together order and metric approaches to powerdomains and prove eventually that both constructions induce in fact the same (metrical) properties in a wide class of SFP structures.

Keywords

Finite Alphabet Finitary Basis Infinitary Element Canonical Representative Canonical Injection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. ARNOLD, M. NIVAT THE METRIC SPACE OF INFINITE TREES; ALGEBRAIC AND TOPOLOGICAL PROPERTIES Annales societatis mathematicae polonae Series IV: Fundamenta Informaticae III-4, 1980, pp. 445–476Google Scholar
  2. [2]
    S.L. BLOOM, R. TINDELL COMPATIBLE ORDERINGS ON THE METRIC THEORY OF TREES SIAM J. of Computing, Nov. 1980, vol. 9, no 4, pp. 683–691Google Scholar
  3. [3]
    L. BOASSON, M. NIVAT ADHERENCES OF LANGUAGES JCSS 20, 1980, pp. 285–309Google Scholar
  4. [4]
    G. COMYN, M. DAUCHET APPROXIMATIONS OF INFINITARY OBJECTS Ninth Colloquium ICALP, Lectures Notes in Computer Science, Springer Verlag, no 140, pp. 116–127Google Scholar
  5. [5]
    G. COMYN OBJETS INFINIS CALCULABLES Thèse d'Etat, LILLE, Mars 1982Google Scholar
  6. [6]
    G. GIERZ, K.H. HOFMANN, K. KEIMEL, J.D. LAWSON, M. MISLOVE, D. SCOTT A COMPENDIUM OF CONTINUOUS LATTICES Springer Verlag, 1980.Google Scholar
  7. [7]
    F. GIRE UNE EXTENSION AUX MOTS INFINIS DE LA NOTION DE TRANSDUCTION RATIONNELLE Colloquium G.I., 1982, pp. 123–139Google Scholar
  8. [8]
    J.A. GOGUEN, J. THATCHER, E. WAGNER, J. WRIGHT INITIAL ALGEBRA SEMANTICS AND CONTINUOUS ALGEBRAS J.A.C.M., Vol. 24, 1977, pp. 68–95Google Scholar
  9. [9]
    M. NIVAT INFINITE WORDS, INFINITE TREES, INFINITE COMPUTATIONS Reprint from: Foundations of Computer cience III, Part 2: Languages, logic and semantics. Ed. J.W. BAKKER, J. VAN LEUWEN Mathematical Centre Tract 109 1979, pp. 1–52Google Scholar
  10. [10]
    G. PLOTKIN Tω AAS A UNIVERSAL DOMAIN JCSS 17, 1978, pp. 209–236Google Scholar
  11. [11]
    G. PLOTKIN A POWERDOMAIN CONSTRUCTION SIAM J. Comput. 5, Sept. 1976, pp. 452–487CrossRefGoogle Scholar
  12. [12]
    M. SMYTH POWERDOMAINS JCSS 16, 1978, pp. 23–36Google Scholar
  13. [13]
    M. SMYTH THE LARGEST CARTESIAN CLOSED CATEGORY OF DOMAINS Comp. SCI. Report, Univ. of Edinburgh, March 1982.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • S. Tison
    • 1
  • M. Dauchet
    • 1
  • G. Comyn
    • 1
  1. 1.University of LilleFrance

Personalised recommendations