Prediction-error filtering and maximum-entropy spectral estimation

  • S. Haykin
  • S. Kesler
Part of the Topics in Applied Physics book series (TAP, volume 34)


Reflection Coefficient Autocorrelation Function Recursive Formula Wiener Filter Stationary Time Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 2.1
    J.P. Burg: “Maximum Entropy Spectral Analysis”, 37th Ann. Intern. Meeting, Soc. Explor. Geophys., Oklahoma City, Oklahoma (1967)Google Scholar
  2. 2.2
    T.Kailath: IEEE Trans. IT-20 (2), 146–181 (1974)MathSciNetGoogle Scholar
  3. 2.3
    A.J.Berkhobt, P.R.Zaanen: Geophys. Prospect. 24, 141–197 (1976)ADSCrossRefGoogle Scholar
  4. 2.4
    C. F. Gauss: Theoria Motus Corporum Coelestium in Conicus Solem Ambientum, Hamburg (1809) (Trannl.: Dover, New York 1963)Google Scholar
  5. 2.5
    A.N.Kolmogoroff: Bull. Acad. Sci. U.S.S.R., Ser. Math. 5,3–14 (1941)MathSciNetGoogle Scholar
  6. 2.6
    N.Wiener: Extrapolation, Interpolation, and Smoothing of Stationary Time Series with Engineering Applications (The M.I.T. Press, Cambridge, Mass. 1949)MATHGoogle Scholar
  7. 2.7
    F. A.Graybill: An Introduction to Linear Statistical Models (McGraw-Hill, New York 1961)MATHGoogle Scholar
  8. 2.8
    B. Widrow: “Adaptive Filters 1: Fundamentals”; Tech. Rpt. No. 6764-6, Standford University, Stanford, Cal. (1966)Google Scholar
  9. 2.9
    S.Treitel: Geophys. 39, (2), 169–173 (1974)CrossRefGoogle Scholar
  10. 2.10
    S. Haykin: “Spectral Classification of Radar Clutter Using the Maximum Entropy Method”, NATO Adv. Study Inst. Pattern Recognition and Signal Processing, E.N.S.T., Paris (1978)Google Scholar
  11. 2.11
    J.Makhoul: Proc. IEEE 63, No. 4, 561–580 (1975)ADSCrossRefGoogle Scholar
  12. 2.12
    D. E. Smylie, G. K. C. Clarke, T. J. Ulrych; “Analysis of Irregularities in the Earth's Rotation”, in Methods in Computational Physics, Vol. 13, ed. by B. Alder, S. Fernbach, M. Rotenberg (Academic Press, New York 1973) pp. 391–430Google Scholar
  13. 2.13
    D. Middleton: Introduction to Statistical Communication Theory (McGraw-Hill, New York 1960)MATHGoogle Scholar
  14. 2.14
    J.P.Burg: “Maximum Entropy Spectral Analysis”; Ph.D. Dissertation, Stanford University, Stanford, Cal. (1975)Google Scholar
  15. 2.15
    S. Haykin: Communication Systems (Wiley and Sons, New York 1978)Google Scholar
  16. 2.16
    H. W. Bode: Network Analysis and Feedback Amplifier Design (Van Nostrand Reinhold, New York 1945)Google Scholar
  17. 2.17
    E. A. Guillemin: The Mathematics of Circuit Analysis (Wiley and Sons, New York 1949)MATHGoogle Scholar
  18. 2.18
    E.Parzen: “Multiple Time Series Modeling”,in Multivariate AnalysisII, ed. by P. R. Krishnaiah (Academic Press, New York 1969)Google Scholar
  19. 2.19
    N. Levinson: J. Math. Phys. 25, 261–278 (1947)MathSciNetCrossRefGoogle Scholar
  20. 2.20
    J. Durbin: Rev. Inst. Int. Statist. 28, (3), 233–243 (1960)CrossRefGoogle Scholar
  21. 2.21
    J. P. Burg: “A New Analysis Technique for Time Series Data”, NATO Adv. Study Inst. Signal Processing, Enschede, Netherlands (1968)Google Scholar
  22. 2.22
    J.Makhoul: IEEE Trans. ASSP-25, (5), 423–428 (1977)Google Scholar
  23. 2.23
    F. Itakura, S. Saito: “Digital Filtering Techniques for Speech Analysis and Synthesis”, 7th Intern. Conf. Acoust., Budapest, paper 25-C-1 (1971)Google Scholar
  24. 2.24
    R. N. McDonough: Geophys. 39 (6), 843–851 (1974)CrossRefGoogle Scholar
  25. 2.25
    S. Haykin, S. Kesler: Proc. IEEE 64 (5), 822–823 (1976)CrossRefGoogle Scholar
  26. 2.26
    J. D. Markel, A. H. Gray, Jr.: IEEE Trans. ASSP-23 (5), 473–486 (1975)Google Scholar
  27. 2.27
    C. T. Mullis, R. A. Roberts: IEEE Trans. ASSP-24 (6), 538–550 (1976)MathSciNetGoogle Scholar
  28. 2.28
    A. V. Oppenheim, R. W. Schafer: Digital Signal Processing (Prentice Hall, Engelwood Cliffs, N.J. 1975)MATHGoogle Scholar
  29. 2.29
    E. A. Robinson: Statistical Communication and Detection (Hafner Press, New York 1967)Google Scholar
  30. 2.30
    S. Treitel, E. A. Robinson: IEEE Trans. GE-4 (1), 25–38 (1966)Google Scholar
  31. 2.31
    A.Papoulis: Probability, Random Variables, and Stochastic Processes (McGraw-Hill, New York 1965)MATHGoogle Scholar
  32. 2.32
    L. H. Koopmans: The Spectral Analysis of Time Series (Academic Press, New York 1974)MATHGoogle Scholar
  33. 2.33
    L.J.Griffiths: “A Continuous-Adaptive Filter Implemented as a Lattice Structure”, IEEE Intern. Conf. Acoust., Speech, Signal Processing, Hartford, Conn. (1977) pp. 683–686Google Scholar
  34. 2.34
    J.Makhoul: IEEE Trans. ASSP-26 (4), 304–314 (1978)Google Scholar
  35. 2.35
    J. Makhoul, R. Viswanathan: “Adaptive Lattice Methods for Linear Prediction”, IEEE Intern. Conf. Acoust., Speech, Signal Processing, Tulsa, Ok. (1978) pp. 83–86Google Scholar
  36. 2.36
    R. E. Kromer: “Asymptotic Properties of the Autoregressive Spectral Estimator”; Ph.D. dissertation, Dept. of Statistics, Tech. Rpt. No. 13, Stanford University, Stanford, Cal. (1970)Google Scholar
  37. 2.37
    K. N. Berk: Ann. Statistics 2 (3), 489–502 (1974)MathSciNetCrossRefGoogle Scholar
  38. 2.38
    T. J. Ulrych, T. N. Bishop: Rev. Geophys. Space Phys. 13, 183–200 (1975)ADSCrossRefGoogle Scholar
  39. 2.39
    G.M.Jenkins, D.G.Watts: Spectral Analysis and Its Application (Holden-Day, San Francisco, Cal. (1968)MATHGoogle Scholar
  40. 2.40
    W. Gersch, D. R. Sharpe: IEEE Trans. AC-18, (6), 367–369 (1973)Google Scholar
  41. 2.41
    A. B. Baggeroer: IEEE Trans. IT-22 (5), 534–545 (1976)MathSciNetGoogle Scholar
  42. 2.42
    H. Akaike: Ann. Inst. Statist. Math. 21, 243–247 (1969)MathSciNetCrossRefGoogle Scholar
  43. 2.43
    H. Akaike: Ann. Inst. Statist. Math. 22, 203–217 (1970)MathSciNetCrossRefGoogle Scholar
  44. 2.44
    H. Akaike: IEEE Trans. AC-19 (6), 716–723 (1974)MathSciNetGoogle Scholar
  45. 2.45
    T. J. Ulrych, R. W. Clayton: Phys. Earth Planet. Inter. 12, 188–200 (1976)ADSCrossRefGoogle Scholar
  46. 2.46
    E.Parzen: “An Approach to Time Series Modeling and Forecasting Illustrated by Hourly Electricity Demands”, Statistical Sci. Div., State University of New York in Buffalo, Tech. Rpt. 37 (1976)Google Scholar
  47. 2.47
    T.E.Landers, R.T.Lacoss: IEEE Trans. GE-15 (1), 26–32 (1977)ADSGoogle Scholar
  48. 2.48
    S. B. Kesler, S. Haykin: Can. Elec. Eng. J. 3 (1), 11–16 (1978)CrossRefGoogle Scholar
  49. 2.49
    S. B. Kesler, S. Haykin: IEEE Trans. IT-24, (2), 269–272 (1978)Google Scholar
  50. 2.50
    M. I. Skolnik: Radar Handbook (McGraw-Hill, New York 1970)Google Scholar
  51. 2.51
    E. J.Barlow: Proc. IRE 37, 340–355 (1949)CrossRefGoogle Scholar
  52. 2.52
    M. Abramowitz, I. A. Stegun: Handbook of Mathematical Functions (Dover, New York 1965)MATHGoogle Scholar
  53. 2.53
    S. B. Kesler, S. Haykin: “Maximum Entropy Estimation of Radar Clutter Spectra”, Nat. Telecommun. Conf., Birmingham, Ala. (1978)Google Scholar
  54. 2.54
    S. Haykin, S. Kesler, B. Currie: “Autoregressive Spectral Analysis and Its Application to Radar Clutter Classification”, Intern. Conf. on Radar, Paris, France (1978)Google Scholar
  55. 2.55
    S. Haykin, S. Kesler, B. Currie: Proc. IEEE 67, 332–333 (1979)ADSCrossRefGoogle Scholar
  56. 2.56
    S. B. Kesler: “Nonlinear Spectral Analysis of Radar Clutter”: Ph.D. dissertation, Commun. Res. Lab. Rpt. No. CRL-51, McMaster University, Hamilton, Ontario (1977)Google Scholar
  57. 2.57
    B. W. Currie: “Design and Hardware Implementation of Radar Video Display and Sampler/Digitizer for Use in Radar Clutter Studies”; M. Eng. Thesis, McMaster University, Hamilton, Ontario (1976)Google Scholar
  58. 2.58
    P. D. Welch: IEEE Trans. AU-15 (3), 70–73 (1967)ADSMathSciNetGoogle Scholar
  59. 2.59
    M. Morf, A. Vieira, D. T. L. Lee, T. Kailath: IEEE Trans. GE-16 (2), 85–94 (1978)ADSMathSciNetGoogle Scholar
  60. 2.60
    R. A. Wiggins, E. A. Robinson: J. Geophys. Res. 70, 1885–1891 (1965)ADSMathSciNetCrossRefGoogle Scholar
  61. 2.61
    M. Morf, A. Vieira, T. Kailath: Ann. Statistics 6 (3), 643–648 (1978)MathSciNetCrossRefGoogle Scholar
  62. 2.62
    H. Akaike: Ann. Inst. Statist. Math. 23, 163–180 (1971)MathSciNetCrossRefGoogle Scholar
  63. 2.63
    G. J. Fryer, M. E.Odegard, G. H. Sutton: Geophys. 40, (3), 411–425 (1975)CrossRefGoogle Scholar
  64. 2.64
    R. H. Jones: “Multivariate Maximum Entropy Spectral Analysis”, Appl. Time Series Anal. Symp., Tulsa, Ok., May (1976)Google Scholar
  65. 2.65
    R.H.Jones: “Multivariate Autoregression Estimation Using Residuals”, Appl. Time Series Anal. Symp., Tulsa, Ok., May (1976)Google Scholar
  66. 2.66
    A. H. Nuttall: “Fortran Program for Multivariate Linear Predictive Spectral Analysis Employing Forward and Backward Averaging”, Naval Underwater System Center, Tech. Doc. 5419, New London, Conn. May (1976)Google Scholar
  67. 2.67
    A.H.Nuttall: “Multivariate Linear Predictive Spectral Analysis Employing Weighted Forward and Backward Averaging: A Generalization of Burg's Algorithm”, Naval Underwater System Center, Tech. Doc. 5501, New London, Conn., Oct. (1976)Google Scholar
  68. 2.68
    A.H.Nuttall: “Positive Definite Spectral Estimate and Stable Correlation Recursion for Multivariate Linear Predictive Spectral Analysis, Naval Underwater System Center, Tech. Doc. 5729, New London, Conn., Nov. (1976)Google Scholar
  69. 2.69
    O. N. Strand: “Computer Programs for Maximum Entropy Spectral Analysis of Real and Complex Multichannel Time Series (with Microfilm Plots)", National Oceanic and Atmospheric Administration, Tech. Ucmo ERL WPL-22, Boulder, Colo., April (1977)Google Scholar
  70. 2.70
    O. N. Strand: IEEE Trans. AC-22 (4), 634–640 (1977)MathSciNetGoogle Scholar
  71. 2.71
    U.Grenander, G.Szegb: Toeplitz Forms and Their Applications (University of California Press, Berkeley and Los Anglees 1958)Google Scholar
  72. 2.72
    H. Widom: “Toeplitz Matrices”, in Studies in Real and Complex Analysis, MAA Studies in Mathematics, ed. by I.I.Hirschman, Jr. (Prentice Hall, Englewood Cliffs, N.J. 1965)Google Scholar
  73. 2.73
    R. M. Gray: “Toeplitz and Circulant Matrices: A Review”, Tech. Rpt. No. 6502-1, Stanford University, Cal. (1971)Google Scholar
  74. 2.74
    R. E. A. C.Paley, N. Wiener: Amer. Math. Soc. Colloquium Publ. 19, 16–17 (1934)Google Scholar
  75. 2.75
    C. E. Shannon: Bell Syst. Tech. J. 27, 379–423, 623–656 (1948)MathSciNetCrossRefGoogle Scholar
  76. 2.76
    H. L. Van Trees: Detection, Estimation, and Modulation Theory, Part I (Wiley and Sons, New York 1968)MATHGoogle Scholar
  77. 2.77
    J. D. Markel, A. H. Gray, Jr.: Linear Prediction of Speech, Communications and Cybernetics, Vol. 12 (Springer, Berlin, Heidelberg, New York 1976)MATHGoogle Scholar
  78. 2.78
    N.O. Andersen: Geophys. 39, 69–72 (1974)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • S. Haykin
  • S. Kesler

There are no affiliations available

Personalised recommendations