Advertisement

Decay of metastable states — Kramers, first passage time and variational approaches

  • S. Dattagupta
  • S. R. Shenoy
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 184)

Keywords

Saddle Point Metastable State Passage Time Potential Condition Trial Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Becker and W. Döring, Ann. Physik 24, 719 (1935);also J. Frenkel, “Kinetic Theory of Liquids”, Chap.VII, Dover Publications, Inc., New York 1955.Google Scholar
  2. 2.
    J.S. Langer and M.E. Fisher, Phys. Rev. Letters 19, 560 (1967) and J.S. Langer and V. Ambegaokar, Phys. Rev. 164, 498 (1967).Google Scholar
  3. 3.
    J.S. Langer, Ann. Phys. (N.Y) 65, 53 (1971).Google Scholar
  4. 4.
    G.S. Agarwal and S.R. Shenoy, Phys. Rev. A23, 2719 (1981); See also R. Gilmore, Phys. Rev. A20, 2510 (1979).Google Scholar
  5. 5.
    R. Landauer and J.A. Swanson, Phys. Rev. 121, 1668 (1961); see also J.S. Langer, Ann. Phys. (N.Y.) 54, 258 (1969).Google Scholar
  6. 6.
    H.A. Kramers, Physica (utrecht) 7, 284 (1940).Google Scholar
  7. 7.
    W.F. Brown, Jr., Phys. Rev. 130, 1677 (1963).Google Scholar
  8. 8.
    H. Haken, “Synergetics”, Chap. 7, Springer-Verlag, Berlin, 1977.Google Scholar
  9. 9.
    Z. Schuss, SIAM J. Review 22, 119 (1980).Google Scholar
  10. 10.
    R.L. Stratonovich, “Topics in the Theory of Random Noise”, trans. by R.A. Silverman, Chap. 4, Vol. 1, Gordon and Breach, New York 1963. See also C.W.Gardiner, “ A Handbook of Stochastic Methods for Physics, Chemistry and Natural Sciences, Chap. 5, Springer-Verlag, Berlin 1982.Google Scholar
  11. 11.
    J.D. Farina, L.M. Narducci, J.M. Yuan and L.A. Lugiato, in “Optical Bistability”, eds. C.M. Bowden et al., Plenum 1981, p.337.Google Scholar
  12. 12.
    R. Roy, R. Short, J. Durnin and L. Mandel, Phys. Rev. Lett. 45, 1486 (1980).Google Scholar
  13. 13.
    D. Kumar, this volume, p.Google Scholar
  14. 14.
    Z. Schuss and B.J. Matkowsky, SIAM J. Appl. Math. 35, 604 (1979); also B.J. Matkowsky and Z. Schuss, ibid, 33, 365 (1977).Google Scholar
  15. 15.
    R. Graham and A. Schenzle, Phys. Rev. A23, 1302, (1981).Google Scholar
  16. 16.
    G.S. Agarwal, this volume, p.Google Scholar
  17. 17.
    V. Srinivasan,this volume, p.; see also the appendix in Ref. [13].Google Scholar
  18. 18.
    See, for example, J. Mathews and R.L. Walker, “Mathematical Methods of Physics”, Chap. 12, Benjamin, Inc., New York 1965.Google Scholar
  19. 19.
    D.H. Weinstein, Proc. Nat. Acad. Sci. U.S.A. 20, 529 (1934) and E. Kamke, Math. Z. 45, 788 (1939).Google Scholar
  20. 20.
    H. Brand, A. Schenzle and G. Schröder, Phys. Rev. A25, 2324 (1982).Google Scholar
  21. 21.
    G.S. Agarwal and S. Dattagupta, unpublished.Google Scholar
  22. 22.
    M.M. Tehrani and L. Mandel, Phys. Rev. A17, 677 (1978); 17, 694 (1978); F.T.Hioe, S. Singh and L. Mandel, ibid., 19, 2036 (1979).Google Scholar
  23. 23.
    The second of Ref. [14] contains a general treatment with off-diagonal, x-dependent diffusion, and without the ‘potential condition', but within the usual E ≪l limit.Google Scholar
  24. 24.
    S. Singh and L. Mandel, Phys. Rev. A20, 2459 (1979); L. Mandel, R.Roy and S.Singh p.127 in “Optical Bistability”, cited in Ref.[11].Google Scholar
  25. 25.
    G.S. Agarwal and S.R. Shenoy, unpublished.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • S. Dattagupta
    • 1
  • S. R. Shenoy
    • 1
  1. 1.School of PhysicsUniversity of HyderabadHyderabadIndia

Personalised recommendations