Langevin equation — application to liquid state dynamics

  • K. N. Pathak
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 184)


In these lectures I have introduced various relevant correlation functions which are essential in the study of atomic motion of liquids. The generalized Langevin equation has been discussed and procedure to make calculations from it is outlined. A mode coupling theory for the VAF has been discussed which quite successfully explains the experimental data, as well as known long time tail. Collective excitations are discussed within the framework of phenomenological theory. It is emphasized that the liquid Argon type system can be understood in terms of essentially one relaxation time, whereas for liquid metal type systems, two distinct relaxation times are essential. Recent microscopic calculations are also pointed out. In our opinion it would be of interest to relate the two relaxation times to microscopic processes and interatomic potential. In conclusion it can be fair to say that microscopic dynamics of liquid state is still an open problem.

I am grateful to Mr. G.K. Agarwal without whose help it would have been impossible to prepare this draft. He has done an excellent job of organising and editing the manuscript.


Collective Excitation Mode Coupling Theory Velocity Autocorrelation Function Generalize Langevin Equation Relaxation Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.N. Pathak, Phys. Rev. 139A, 1569 (1965).Google Scholar
  2. 2.
    R.S. Tripathi and K.N. Pathak, Nuovo Cimento 21B, 289 (1974).Google Scholar
  3. 3.
    P.F. Choquard, ‘The Anharmonic Crystal’ (Benjamin; 1967 N.Y.).Google Scholar
  4. 4.
    P.A. Egelstaff, ‘An Introduction to the Liquid State’ (Academic Press:1967).Google Scholar
  5. 5.
    J.P. Hansen and I.R. Mc Donald, ‘Theory of Simple Liquids'(Academic Press:1976).Google Scholar
  6. 6.
    R. Zwanzig, Lectures in Theoretical Physics, Boulder Vol.III, ed. W.E. Britton (Interscience: 1961 N.Y.).Google Scholar
  7. 7.
    H. Mori, Phys. Rev. 112, 1892 (1958); Prog. Theo. Phys. 28, 763 (1962); 33, 423 (1965); 34, 399 (1965).Google Scholar
  8. 8.
    G. Placzek, Phys. Rev. 86, 377 (1952).Google Scholar
  9. 9.
    P.G. de Gennes, Physica 25, 825 (1959).Google Scholar
  10. 10.
    10.D. Forster, P.C. Martin and S. Yip, Phys. Rev. 170, 155 (1968).Google Scholar
  11. 11.
    R. Bansal and K.N. Pathak, Phys. Rev. A9, 2773 (1974).Google Scholar
  12. 12.
    D. Levesque, L. Verlet and J. Kurkijarvi, Phys. Rev. A7, 1690 (1973).Google Scholar
  13. 13.
    A. Rahman, Phys. Rev. Lett. 32, 52 (1974); Phys. Rev. A9, 1667 (1974).Google Scholar
  14. 14.
    R. Bansal and K.N. Pathak, Phys. Rev. A9, 2773 (1974).Google Scholar
  15. 15.
    R. Bansal, G.S. Dubey and K.N. Pathak, Phys. Rev. A24, 3239 (1981).Google Scholar
  16. 16.
    Ravinder Bansal and W. Bruns, Phys. Rev. A18, 1637 (1978).Google Scholar
  17. 17.
    H.B. Singh, Aruna Sharma and K.N. Pathak, Phys. Rev. A19, 899 (1979).Google Scholar
  18. 18.
    G.K. Agarwal and K.N. Pathak, J. Phys. C15, 5063 (1982).Google Scholar
  19. 19.
    D. Forster, ‘Hydrodynamic Fluctuations, Broken Symmetry and correlation Functions’Google Scholar
  20. 20.
    T. Munarkata and A. Igarashi, Prog. Theo. Phys. 58, 1345 (1977); 60, 45 (1978).Google Scholar
  21. 21.
    J.R.D.Copley and S.W. Lovesey, Rep. Prog. Phys. 38, 461 (1975).Google Scholar
  22. 22.
    J.P. Boon and S. Yip, ‘Molecular Hydrodynamics’ (Mc Graw Hill, 1980).Google Scholar
  23. 23.
    G.S. Dubey, V.K. Jindal and K.N. Pathak, Prog. Theo. Phys. 64, 1893 (1980).Google Scholar
  24. 24.
    G.K. Agarwal and K.N. Pathak, J. Phys. C (In press).Google Scholar
  25. 25.
    Rajini Varma, M. Phil. Thesis (Panjab University, Chandigarh) 1982 (unpublished).Google Scholar
  26. 26.
    N.K. Ailawadi, A. Rahman and R. Zwanzig, Phys. Rev. A4, 1616 (1971).Google Scholar
  27. 27.
    Ravinder Bansal and K.N.Pathak, Phys. Rev. A15, 2519 (1977) and A15, 2531 (1977).Google Scholar
  28. 28.
    K.N. Pathak and K.S. Singwi, Phys. Rev. A2, 2427 (1970).Google Scholar
  29. 29.
    P.K. Kahol, D.K. Chaturvedi and K.N. Pathak, Physica 87A, 192 (1977).Google Scholar
  30. 30.
    K.N. Pathak, G. Cubiotti, K.S. Singwi and M.P. Tosi, Nuo Cimento 13B, 185 (1973).Google Scholar
  31. 31.
    W. Götze and M. Lucke, Phys. Rev. A11, 2173 (1975).Google Scholar
  32. 32.
    J. Bosse, W. Götze and M. Lucke, Phys. Rev. A17, 434 (1978).Google Scholar
  33. 33.
    L. Sjögren and A. Sjölander, Ann. Phys. 110, 122 (1978).Google Scholar
  34. 34.
    G.F. Marenko, Phys. Rev. A3, 2121 (1971)Google Scholar
  35. 35.
    G.F. Marenko and S. Yip “Modern Theoretical Chemistry”, ed. B.J. Berne Vol. 6 Plenum Press, p.181 (1977).Google Scholar
  36. 36.
    P.K. Kahol, Ravinder Bansal and K.N. Pathak, Phys. Rev. A14, 408 (1976).Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • K. N. Pathak
    • 1
  1. 1.Department of PhysicsPanjab UniversityChandigarhIndia

Personalised recommendations