Advertisement

Chaos in nonlinear optical systems

  • H. J. Carmichael
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 182)

Abstract

Predictions of self-oscillation and chaos in optical bistability in a ring cavity are reviewed. Each is derived as a special case from a single unifying stability analysis. Three other systems which also show self-oscillations and chaos are discussed. Each comprises two ring-cavity modes interacting via a nonlinear medium. Nonlinear couplings are provided by a J=1/2 to J=1/2 transition, a two-photon transition, and a second-order nonlinear susceptibility, respectively. A new type of period-doubling to chaos which occurs in the first of these models, and also in the Lorenz equations, will be described.

Keywords

Cavity Mode Chaotic Attractor Ring Cavity Stable Limit Cycle Optical Bistability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.L. McCall, Appl.Phys.Lett., 32, 284, (1978).CrossRefGoogle Scholar
  2. 2.
    R. Bonifacio and L.A. Lugiato, Lett.Nuovo.Cimento, 21, 510, (1978)Google Scholar
  3. 2a.
    R. Bonifacio, M. Gronchi and L.A. Lugiato, Optics Commun., 30, 129, (1979); M. Gronchi, V. Benza, L.A. Lugiato, P. Meystre and M. Sargent III, Phys.Rev., A24, 1419, (1981).CrossRefGoogle Scholar
  4. 3.
    K. Ikeda, Optics Commun., 30, 257, (1979).CrossRefGoogle Scholar
  5. 4.
    K. Ikeda, H. Daido and O. Akimoto, Phys.Rev.Lett., 45, 709, (1980).CrossRefGoogle Scholar
  6. 5.
    L.A. Lugiato, Optics Commun., 33, 108, (1980).CrossRefGoogle Scholar
  7. 6.
    F. Casagrande, L.A. Lugiato and M.L. Asquini, Optics Commun., 32, 492, (1980).CrossRefGoogle Scholar
  8. 7.
    M. Sargent III, Kvant.Elektron. (Moscow) 10, 2151, (1980) (Sov.J.Quantum Electron., 10, 1247, (l980)).Google Scholar
  9. 8.
    W.J. Firth, Optics Commun., 39, 343, (1981).CrossRefGoogle Scholar
  10. 9.
    H.M. Gibbs, F.A. Hopf, D.L. Kaplan and R.L. Shoemaker, Phys.Rev.Lett., 46, 474, (1981); F.A. Hopf, D.L. Kaplan, H.M. Gibbs and R.L. Shoemaker, Phys.Rev., A25, 2172, (1982).CrossRefGoogle Scholar
  11. 10.
    K. Ikeda and O. Akimoto, Phys.Rev.Lett., 48, 617, (1982).CrossRefGoogle Scholar
  12. 11.
    L.A. Lugiato, L.M. Narducci, D.K. Brandy and C.A. Pennise, Optics Commun., 43, 281, (1982).CrossRefGoogle Scholar
  13. 12.
    H. Nakatsuka, S. Asaka, H. Itah, K. Ikeda and M. Matsuoka, Phys.Rev.Lett., 50, 109, (1983).CrossRefGoogle Scholar
  14. 13.
    C.M. Savage, H.J. Carmichael and D.F. Walls, Optics Commun., 42, 211, (1982)CrossRefGoogle Scholar
  15. 13a.
    H.J. Carmichael, C.M. Savage and D.F. Walls, Phys.Rev.Lett., 50, 163, (1983).CrossRefGoogle Scholar
  16. 14.
    C. Parigger, P. Zoller and D.F. Walls, Optics Commun., 44, 213, (1983).CrossRefGoogle Scholar
  17. 15.
    R.M. May, Nature, 261, 459, (1976).PubMedGoogle Scholar
  18. 16.
    A.S. Monin, Usp.Fiz.Nauk., 125, 97, (1978) (Sov.Phys.-Usp., 21, 429, (1978)).Google Scholar
  19. 17.
    M.I. Rabinovich, Usp.Fiz.Nauk., 125, 123, (1978) (Sov.Phys.-Usp., 21, 443, (1978)).Google Scholar
  20. 18.
    J.P. Exkmann, Rev.Mod.Phys., 53, 643, (1981).CrossRefGoogle Scholar
  21. 19.
    E. Ott, Rev.Mod.Phys., 53, 655, (1981).CrossRefGoogle Scholar
  22. 20.
    K. Tomita, Phys.Rep., 86, 115, (1982).CrossRefGoogle Scholar
  23. 21.
    H. Seidel, U.S. Patent No. 3 610 731 (5 October 1971); A. Szoke, V. Daneu, J. Goldhar and N. Kurnit, Appl.Phys.Lett., 15, 376, (1969)Google Scholar
  24. 21a.
    S.L. McCall, Phys.Rev., A9, 1515, (1974); H.M. Gibbs, S.L. McCall and T.N.C. Venkatesan, Phys.Rev.Lett., 36, 1135, (1976).Google Scholar
  25. 22.
    M. Kitano, T. Yabuzaki and T. Ogawa, Phys.Rev.Lett., 46, 926, (1981).CrossRefGoogle Scholar
  26. 23.
    S. Cecchi, G. Giusfredi, E. Petriella and P. Salieri, Phys.Rev.Lett., 49, 1928, (1982).CrossRefGoogle Scholar
  27. 24.
    W.J. Sandle and M.W. Hamilton, this volume.Google Scholar
  28. 25.
    F.T. Arecchi and A. Politi, Lett.Nuovo.Cim., 23, 65, (1978)Google Scholar
  29. 25a.
    G.P. Agrawal and C. Flytzanis, Phys.Rev.Lett., 44, 1058, (1980).CrossRefGoogle Scholar
  30. 26.
    A. Giacobino, M. Devaud, F. Biraben and G. Brynberg, Phys.Rev.Lett., 45, 434, (1980).CrossRefGoogle Scholar
  31. 27.
    K.J. McNeil, P.D. Drummond and D.F. Walls, Optics Commun., 27, 292, (1978).CrossRefGoogle Scholar
  32. 28.
    J. Coste and N. Peyraud, Physica, 5D, 415, (1982).Google Scholar
  33. 29.
    For the ring cavity model with spatial effects see Ref. 3 and the following: R. Bonifacio and L.A. Lugiato, Lett.Nuovo Cimento., 21, 505, (1978)Google Scholar
  34. 29a.
    R. Bonifacio, L.A. Lugiato and M. Gronchi, in Laser Spectroscopy IV, Proceedings of the Fourth Conference on Laser Spectroscopy, 1979, edited by H. Walther and W.K. Rothe (Springer, Berlin, 1979)Google Scholar
  35. 29b.
    R. Roy and M.S. Zubairy, Phys.Rev., A21, 274, (1980); H.J. Carmichael and J.A. Hermann, Z.Phys., 38B, 365, (1980).Google Scholar
  36. 30.
    Only the first factor is obtained if the perturbation from the steady state is assumed real. This corresponds to the characteristic equation derived in Ref. 2; see Ref. 34.Google Scholar
  37. 31.
    H.J. Carmichael, R.R. Snapp and W.C. Schieve, Phys.Rev., A26, 3408, (1982).Google Scholar
  38. 32.
    H.J. Carmichael, Phys.Rev.A., to be published.Google Scholar
  39. 33.
    G.P. Agrawal and H.J. Carmichael, Phys.Rev.A., 19, 2074, (1979).CrossRefGoogle Scholar
  40. 34.
    H. Leipholz, Stability Theory, (Academic, New York, 1970), p.33.Google Scholar
  41. 35.
    The period-doubling sequences predicted in Refs. 3 and 4 are studies in some detail in Ref. 34 where general references on period-doubling are given — see also; R.R. Snapp, H.J. Carmichael and W.C. Schieve, Optics Commun., 40, 68, (1981).CrossRefGoogle Scholar
  42. 36.
    P. Mandel and T. Erneux, Optica Acta, 29, 7, (1982).Google Scholar
  43. 37.
    R. Gilmore, Catastrophe Theory for Scientists and Engineers, (Wiley, New York, 1981), pp. 553–62.Google Scholar
  44. 38.
    K.A. Robbins, SIAM J.Appl.Math., 36, 457, (1979).CrossRefGoogle Scholar
  45. 39.
    See for example; J.N. Elgin, G.H.C. New and K.E. Orkney, Optics Commun., 18, 250, (1976).CrossRefGoogle Scholar
  46. 40.
    J.A. Hermann, Optics Commun., 44, 62, (1982).CrossRefGoogle Scholar
  47. 41.
    C.M. Savage and D.F. Walls, Optica Acta, (in press).Google Scholar
  48. 42.
    M.W. Hamilton, R.J. Ballagh, W. Sandle, Z.Physik B., 49, 263, (1982).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • H. J. Carmichael
    • 1
  1. 1.Physics DepartmentUniversity of WaikatoHamiltonNew Zealand

Personalised recommendations