Dynamical groups and coexistence phenomena

  • Allan I. Solomon
Session IX — Statistical Mechanics
Part of the Lecture Notes in Physics book series (LNP, volume 180)


This note describes an application of dynamical Lie groups to many body systems exhibiting phase transitions. The specific model exemplified is that of a three-phase many fermion system for which the appropriate groups is SO(6).


Fermion System Bogoliubov Transformation Local Order Parameter Complex Order Parameter Surface Wave Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    See, for example, the review article by Louis Michel, Rev.Mod. Phys. 52, 617 (1980).Google Scholar
  2. (2).
    A.O. Barut: Phys. Rev. 135, B839 (1964).Google Scholar
  3. (3).
    A.I. Solomon: J. Maths. Phys. 12, 390 (1971).Google Scholar
  4. (4).
    P. Broadbridge and C.A. Hurst: Physics 08A, 39 (1981), and P. Broadbridge: Hadronic Journal 4, 879 (1981).Google Scholar
  5. (5).
    Standard results on semi-simple complex Lie algebras will be found in most texts, for example; “Lie Groups, Lie Algebras and their Representations”, V.S. Varadarajan (Prentice-Hall, 1974).Google Scholar
  6. (6).
    N. Bogoliubov: J. Phys. USSR 11, 23 (1947).Google Scholar
  7. (7).
    A.I. Solomon: Annals of the New York Academy of Sciences (to be published).Google Scholar
  8. (8).
    A.I. Solomon and J.L. Birman: Physics Letters 88A, 413 (1982).Google Scholar
  9. (9).
    M.J. Nass, K. Levin and G.S. Grest: Phys. Rev. Letters 46, 614 (1981).Google Scholar
  10. (10).
    A.I. Solomon: Proceedings of IX International Colloquium on Group Theoretical Methods, Mexico. Lecture Notes in Physics 135, page 42 (Springer-Verlag 1980).Google Scholar
  11. (11).
    J. L. Birman and A.I. Solomon: Phys. Rev. Letters 49, 230 (1982).Google Scholar
  12. (12).
    B. G. Wybourne: “Classical Groups for Physicists”, page 70, (John Wiley, 1974).Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Allan I. Solomon
    • 1
  1. 1.Faculty of MathematicsThe Open UniversityMilton KeynesUK

Personalised recommendations