Self-triality in statistical mechanics and field theory

  • R. Shankar
Session IX — Statistical Mechanics
Part of the Lecture Notes in Physics book series (LNP, volume 180)


I present here a system which exhibits self-triality, a natural extension of the Kramers-Wannier self-duality. There are three complete sets of variables ψ, R and L for describing the system. Any two are disorder variables with respect to the third and the hamiltonian has the same form when expressed in terms of ψ, R or L.


Ising Model Dynkin Diagram Classical Statistical Mechanic Transformation Exchange Dirac Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. A. Kramers and G.H. Wannier, Phys. Rev. 60, 252 (1941).Google Scholar
  2. 2.
    R. Savit, Rev. Mod. Phys. 52, 453 (1980).Google Scholar
  3. 3.
    R. Shankar, Phys. Rev. Lett. 46, 379 (1981).Google Scholar
  4. 4.
    E. Fradkin and L. Susskind, Phys. Rev. D17, 2637 (1978).Google Scholar
  5. 5.
    J.B. Kogut, Rev. Mod. Phys. 51, 659 (1979).Google Scholar
  6. 6.
    K.G. Wilson and J.B. Kogut, Phys. Rep. 12C, No2,(1974).Google Scholar
  7. 7.
    D.J. Gross and A. Neveu, Phys. Rev. D10, 3235 (1974).Google Scholar
  8. 8.
    E. Witten, Nucl. Phys. B142, 285 (1978).Google Scholar
  9. 9.
    R. Shankar, Phys. Lett., 92B, 333 (1980).Google Scholar
  10. 10.
    R. Shankar, Phys. Rev. Lett., 50, No. 11, 1983.Google Scholar
  11. 11.
    J. Ashkin and E. Teller, Phys. Rev. 64, 178, 1983.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • R. Shankar
    • 1
  1. 1.J.W. Gibbs Laboratory Yale UniversityNew HavenUSA

Personalised recommendations