Ising model on finitely presented groups

  • Mario Rasetti
Session IX — Statistical Mechanics
Part of the Lecture Notes in Physics book series (LNP, volume 180)


Irreducible Representation Ising Model Braid Group Mapping Class Group Cayley Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. /1/.
    M.Creutz and B.Freedman,Ann. Phys. (N.Y.) 132,427 (1981)Google Scholar
  2. /2/.
    J.B.Kogut,Revs. Mod. Phys. 51,659 (1979)Google Scholar
  3. /3/.
    J.F.Sadoc,J.Dixmier and A.Guinier,J. Non Cryst. Solids 12,46 (1973)Google Scholar
  4. /4/.
    F.Lund,M.Rasetti and T.Regge,Commun. Math. Phys. 51,15 (1977)Google Scholar
  5. /4a/.
    F.Lund,M.Rasetti and T.Regge,Teor. Mat. Fiz. 11,246 (1977).Google Scholar
  6. /5/.
    H.S.M.Coxeter and W.O.Moser,“Generators and Relations for Discrete Groups”,Springer-Verlag,Berlin,1965Google Scholar
  7. /6/.
    A Cayley tree in which the branching number is 2,and the edges are replaced by hexagons.Google Scholar
  8. /7/.
    M.Rasetti and T.Regge,Rivista Nuovo Cimento 4,1 (1981)Google Scholar
  9. /7a/.
    M.Rasetti and T.Regge,in “Symmetries and Broken Symmetries in Condensed Matter Physics”,N.Boccara ed., IDSET,Paris,1981Google Scholar
  10. /8/.
    M.Rasetti,in “Selected Topics in Statistical Mechanics”, N.N.Bogolubov,jr. and V.N.Plechko eds.,J.I.N.R. Publ.,Dubna,1981Google Scholar
  11. /8a/.
    M.Rasetti,in “Non-perturbative Aspects of Quantum Field Theory”,J.Julve and M.Ramón Medrano eds.,World Scientific Publ. Co.,Singapore,1982Google Scholar
  12. /9/.
    P.Heymans,Proc. London Math. Soc. 19 (1969)Google Scholar
  13. /10/.
    P.W.Kasteleyn,J. Math. Phys. 4,287 (1963)Google Scholar
  14. /11/.
    R.H.Crowell and R.H.Fox,“Introduction to Knot Theory”, Ginn and Co. Publ.,Boston,1963Google Scholar
  15. /12/.
    A.Hatcher and W.Thurston,A Presentation for the Mapping Class Group of a Closed Orientable Surface, to be publ.Google Scholar
  16. /13/.
    F.Laudenbach,Astérisque 66-67,267 (1979)Google Scholar
  17. /14/.
    A.Kerber,“Represéntations of Permutation Groups I”,Springer-V. Lecture Notes in Mathematics 240 (1971)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Mario Rasetti
    • 1
  1. 1.Dipartimento di Fisica del PolitecnicoTorinoItaly

Personalised recommendations