Some aspects of random walks on groups

  • P. W. Kasteleyn
Session IX — Statistical Mechanics
Part of the Lecture Notes in Physics book series (LNP, volume 180)


This paper is concerned with random walks on countable groups. After the introduction of the main concepts three special subjects are treated: random walks on free groups with a finite number of generators, random walks on certain non-abelian extensions of the additive groups Zd and random walks on groups with a stochastic colouring.


Random Walk Countable Group Invariant Subgroup Successive Visit Random Walk Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Spitzer, Principles of Random Walk (Van Nostrand, Princeton, 1964).Google Scholar
  2. 2.
    G.H. Weiss and R.J. Rubin, Adv. in Chem. Phys. (to appear).Google Scholar
  3. 3.
    H. Kesten, Trans. Amer. Math. Soc. 92 (1959) 336–354.Google Scholar
  4. 4.
    E.B. Dynkin and M.B. Malyutov, Doklady Akad. Nauk SSSR 137 (1961) 1042–1045 [English translation: Soviet Math. Doklady 2 (1961) 399–402 ].Google Scholar
  5. 5.
    R.M. Dudley, Proc. Amer. Math. Soc. 13 (1962) 447–450.Google Scholar
  6. 6.
    H. Kesten and F. Spitzer, Acts. Math. 114 (1965) 237–265.Google Scholar
  7. 7.
    Seminaire KGB sur les marches aléatoires, Astérisque 40973), and references mentioned there.Google Scholar
  8. 8.
    P. Crepel, in: Théorie ergodique, Actes des Journées Ergodiques, Rennes 1973/1974, Lecture Notes in Mathematics 532 (Springer-Verlag, 1976), pp. 50–69.Google Scholar
  9. 9.
    E.W. Montroll, Proc. Symp. Appl. Math. 16 (1964) 193–220.Google Scholar
  10. 9.a
    E.W. Montroll and G.H. Weiss, J. Math. Phys. 6 (1965) 167–181.Google Scholar
  11. 10.
    T. Janssen, Crystallographic Groups (North-Holland Publ. Co., Amsterdam-London, 1973).Google Scholar
  12. 11.
    N.G. van Kampen, Physics. 96A (1979) 435–453.Google Scholar
  13. 12.
    G.H. Weiss, J. Stat. Phys. 15 (1976) 157–165.Google Scholar
  14. 13.
    W.Th.F. den Hollander and P.W. Kasteleyn, Physics. (to appear).Google Scholar
  15. 14.
    P.W. Kasteleyn and W.Th.F. den Hollander, J. Stat. Phys. (to appear).Google Scholar
  16. 15.
    C.J. Preston, Gibbs states on countable sets, Cambridge Tracts in Mathematics 68 (Cambridge University Press, London, 1974).Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • P. W. Kasteleyn
    • 1
  1. 1.Instituut-Lorentz voor Theoretische NatuurkundeLeidenThe Netherlands

Personalised recommendations