Advertisement

Dimensional reduction, spinor fielks and characteristic classes

  • H. Römer
Session VIII — Geometrical Methods in Quantum Mechanics and Field Theory
Part of the Lecture Notes in Physics book series (LNP, volume 180)

Abstract

The effect of dimensional reduction, both global and local,on natural vector bundles over higher dimensional manifolds and on characteristic classes is investigated. In particular spinor fields are considered and a new mechanism for introducing a generalized spin structure by dimensional reduction is proposed.

Keywords

Vector Bundle Dimensional Reduction Dirac Operator Spin Structure Characteristic Classis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    E.Cremmer, B.Julia, J.Scherk: Nucl.Phys. 76B, 409 (1978)Google Scholar
  2. 2).
    H.Römer, unpublishedGoogle Scholar
  3. 3).
    M.F.Atiyah, I.M.Singer: Bull.Ann.Math.Soc. 69, 422 (1964)Google Scholar
  4. 3).
    Ann.Math. 87, 484, 546 (1968)Google Scholar
  5. 4).
    See,e.g. T.Eguchi, A.J.Hanson: Physics Reports 66, 214 (1980) and references thereinGoogle Scholar
  6. 5).
    F.Hirzebruch: Topological Methods in Algebraic Geometry Grundlehren der Math.Wissenschaften, Vo1.131, Springer New York (1966)Google Scholar
  7. 6).
    S.M.Christensen, M.J.Duff: Phys.Lett. 76B, 571 (1978)Google Scholar
  8. 6).
    Nucl.Phys. B154, 301 (1979)Google Scholar
  9. 7).
    H.Römer: Phys.Lett. 83B, 172 (1979)Google Scholar
  10. 8).
    J.W. Milnor, J.D. Stasheff: Characteristic Classes, Annals of Math. Studies 76, Princeton Univ.Press (1974)Google Scholar
  11. 9).
    See, e.g. N.K.Nielsen, H.Römer, B.Schroer: Nucl.Phys. B127, 493 (1977) and references thereinGoogle Scholar
  12. 10).
    M.J.Duff, P.van Nieuwenhuizen: Phys.Lett. 94B, 179 (1980)Google Scholar
  13. 11).
    H.Römer: Phys.Lett. 101B, 55 (1981)Google Scholar
  14. 12).
    S.S.Chern, J.Simons: Ann.Math. 99, 48 (1974)Google Scholar
  15. 13).
    M.F.Atiyah, J.B.Segal: Ann.Math. 87, 531 (1968)Google Scholar
  16. 14).
    N.Steenrod: The Topology of Fibre Bundles, Princeton Math.Series No.14, Princeton University PressGoogle Scholar
  17. 15).
    T.Kaluza: Sitzungsbericht Preuss.Akademie Wiss. (1921), 966Google Scholar
  18. 16).
    S.W.Hawking, C.N.Pope: Phys.Lett. 73B, 42 (1978)Google Scholar
  19. 17).
    H.Römer: in preparation.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • H. Römer
    • 1
  1. 1.Fakultät für PhysikFreiburg i.Br.Germany

Personalised recommendations