The algebraic geometry of multimonopoles

  • Werner Nahm
Session VIII — Geometrical Methods in Quantum Mechanics and Field Theory
Part of the Lecture Notes in Physics book series (LNP, volume 180)


Line Bundle Magnetic Charge Higgs Field Physical Vacuum Bogomolny Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    C.Taubes, Comm.Math.Phys. 86 (1982) 257 and 299.Google Scholar
  2. 2).
    C.Callias, Comm.Math.Phys. 62 (1978) 213, with comments by R.Bott and R.Seeley, Comm.Math.Phys. 62 (1978) 235.Google Scholar
  3. 3).
    Hou Bo-Yu et al., Scientia Sinica 21 (1978) 446.Google Scholar
  4. 4).
    W.Nahm, All self-dual monopoles for arbitrary gauge groups, CERN TH-3172 (1981).Google Scholar
  5. 5).
    W.Nahm, in: Proceedings of the Symposium on Particle Physics, Z.Horváth et al. eds., Visegrád 1981.Google Scholar
  6. 6).
    W.Nahm, in: Monopoles in Quantum Field Theory, Proceedings, N.Craigie et al. eds., Trieste 1981.Google Scholar
  7. 7).
    M.Atiyah, N.Hitchin, V.Drinfeld, and Yu.Manin, Phys. Lett. 65A (1978) 185.Google Scholar
  8. 8).
    D.Mumford and P.v.Moerbeke, Acts. Mathematics 143 (1979) 93.Google Scholar
  9. 9).
    N.Hitchin, Comm.Math.Phys. 83 (1982) 579.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Werner Nahm
    • 1
  1. 1.MPI for mathematicsBonn

Personalised recommendations