Group contraction and macroscopic quantum systems

  • Giuseppe Vitiello
Session VII — Nuclear Physics
Part of the Lecture Notes in Physics book series (LNP, volume 180)


The physical significance of group contraction in quantum field theories with spontaneous breakdown of symmetry is discussed. Low-energy theorems and macroscopic ordered state symmetry patterns and structures are observable manifestations of group contraction.


Goldstone Boson Group Contraction Spontaneous Breakdown Symmetry Pattern Observable Manifestation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1-.
    H.Umezawa, Renormalization and invariance in QFT, ed.E.R.Caianiello, Plenum Press 1974, p.275.Google Scholar
  2. 2-.
    C.De Concini and G.Vitiello, Nucl.Phys.B116 (1976) 141; Phys.Lett. 70B(1977) 355.Google Scholar
  3. 3-.
    J.Goldstone, NuovoCimento 19 (1961) 154; J.Goldstone, A.Salam and S.Weinberg, Phys.Rev. 127(1962)965.Google Scholar
  4. 4-.
    H.Matsumoto and H.Umezawa, Symmetries in Science, eds. B.Gruber and R.S.Millman, Plenum Press, 1980.Google Scholar
  5. 5-.
    M.N.Shah, H.Umezawa and G.Vitiello, Phys. Rev. B10 (1974) 4724.Google Scholar
  6. 6-.
    H.Matsumoto, H.Umezawa, G.Vitiello and J.K.Wyly, Phys. Rev. D9 (1974) 2806; E.Weimar, Acts, Phys.Austriaca 48(1978) 201.Google Scholar
  7. 7-.
    H.Matsumoto, N.J.Papastamatiou, H.Umezawa, Nucl. Phys. B82 (1974) 45.Google Scholar
  8. 8-.
    G.Vitiello, Phys. Lett. 58A (1976) 293.Google Scholar
  9. 9-.
    H.Matsumoto, N.J.Papastamatiou, H.Umezawa, Phys.Rev. D13 (1976) 1054.Google Scholar
  10. 10-.
    M.Hongoh, H.Matsumoto, H.Umezawa, Prog.Theor.Phys. 65 (1981), 315.Google Scholar
  11. 11-.
    T.Kugo, I.Ojima, Progr. Theor. Phys. 61 (1979) 294.Google Scholar
  12. 12-.
    P.Tataru-Mihai, G.Vitiello, Lett.Math.Phys., in print.Google Scholar
  13. 13-.
    I.E.Segal, Duke Math.J. 18 (1951) 221; E.Ínönü and E.P.Wigner,Proc.Nat.Acad.Sci. US 39 (1953) 510; R.Herman, Lie groups for physicists, Benjamin,N.Y. 1966 ch.11.Google Scholar
  14. 14-.
    F.Bayen, M.Flato, C.Fronsdal, A.Lichnerowicz, D.Sternheimer, Ann. of Phys. 111 (1978) 61–151.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Giuseppe Vitiello
    • 1
  1. 1.Istituto di FisicaUniversitá di SalernoItalia

Personalised recommendations