Examples of group contraction

  • A. Bohm
  • R. R. Aldinger
Session VI — Symmetry Breaking Group contraction and Extension and Bifurcation
Part of the Lecture Notes in Physics book series (LNP, volume 180)


Two limiting processes are applied to a model which may describe the relativistic quantum mechanical rotator.The first limiting process is defined by the contraction of the Poincaré group representation to the representation of the extended Galilei group (non-relativistic limit), and the second by the contraction of the deSitter group representation to the representation of the Poincaré group (elementary limit). In the elementary limit the model describes a relativistic elementary particle and in the non-relativistic limit it describes a non-relativistic rotator.


Mass Point Relativistic Rotator Casimir Operator Relativistic Generalization Contraction Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. E. Segal, Duke Math. J. 18, 221 (1951).Google Scholar
  2. 2.
    E. Inönü, E. P. Wigner, Proc. N. A. S. 39, 510 (1953).Google Scholar
  3. 3a.
    There is a third correspondence, which I shall not discuss here, but which is very helpful in constructing the model of the relativistic quantum rotator. This is the classical limit establishing the connection to the classical relativistic rotator models of Takabayashi4]; Mukunda, Biedenharn, van Dam 5]; Regge, Hanson.6] Google Scholar
  4. 3.
    A. Bohm, Quantum Mechanics, Ch. III, Springer-Verlag, New York (1979).Google Scholar
  5. 4.
    T. Takabayashi, Prog. Theor. Phys. Suppl. 67, 1 (1979), and references therein.Google Scholar
  6. 5.
    N. Mukunda, H. van Dam and L. C. Biedenharn, Phys. Rev. D28, 1938 (1980).Google Scholar
  7. 6.
    A. J. Hanson, T. Regge, Annals of Phys. 87, 498 (1974).Google Scholar
  8. 7.
    F. Rohrlich, Nucl. Phys. B112, 177 (1978)Google Scholar
  9. 7.a
    H. S. Green, Aust. J. Phys. 29, 483 (1976)Google Scholar
  10. 7.b
    L. P. Staunton, Phys. Rev. D13, 3269 (1976)Google Scholar
  11. 7.c
    A. Bohm, Phys. Rev. 175, 1767 (1968)Google Scholar
  12. 7.d
    H. Bacry, J. Math. Phys. 5, 109 (1964)Google Scholar
  13. 7.e
    R. J. Finkelstein, Phys. Rev. 75, 1079 (1949)Google Scholar
  14. 7.f
    H. S. Snyder, Phys. Rev. 71, 38 (1947).Google Scholar
  15. 8.
    H. C. Corben, “Classical and Quantum Theories of Spinning Particles,” Ch. 11.8, Holden Day Inc., 1968.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • A. Bohm
    • 1
  • R. R. Aldinger
    • 1
  1. 1.Center for Particle TheoryThe University of Texas at AustinAustinTexas

Personalised recommendations