The structure of space — Groups'unitary representations

  • Louis Michel
  • Jan Mozrymas
Session IV — Crystal Groups and Their Representations
Part of the Lecture Notes in Physics book series (LNP, volume 180)

Abstract

For systems with a symmetry group G, the description of physical phenomena corresponding to a representation of G, depends only on the image of this representation. The classification of the images of the unirreps (unitary irreducible representations) of the little space groups Gk is remarkably simple. The nearly four thousands inequivalent unirreps corresponding to high symmetry wave vectors k have only 37 inequivalent images.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1-.
    F.Seitz, Z.Kristallogr. Kristalgeom. 88 (1934) 433, 90 (1935) 289, 91 (1935) 336, 94 (1930) 100.Google Scholar
  2. 2-.
    L.P.Bouckaert, R.Schmoluchowski, E.P.Wigner, Phys.Rev. 50 (1936) 58.Google Scholar
  3. 3-.
    F.Seitz, Ann.Math. 37 (1936) 17.Google Scholar
  4. 4-.
    C.Herring, J.Franklin Institute 233 (1942), 525.Google Scholar
  5. 5-.
    D.K.Faddeyev, Tables of the principal unitary representations of the Fedorov groups Acad.Sci. USSR, Translation Pergamon, New York, 1946.Google Scholar
  6. 6-.
    O.V.Kovalev, Irreducible representation of space groups, Izd.Akad. Nauk. Ukraine hoj USSR, translation-Gordon Breach, New York, 1965.Google Scholar
  7. 7-.
    S.C.Miller, W.F.Love, Irreducible representations of space groups. Pruett, Boulder Colorado 1967.Google Scholar
  8. 8-.
    J.Zak, P.Casher, M.Gluck, Y.G.Gur, The irreducible represenations of space groups, Benjamin, New York 1969.Google Scholar
  9. 9-.
    C.J.Bradley, A.P.Cracknell, The mathematical theory of symmetry in solids, Clarendon Press, Oxford 1972.Google Scholar
  10. 10-.
    A.P.Cracknell, B.L.Davies, S.C.Miller, W.F.Love, General introduction and Tables of irreducible representations of space groups, Plenum Press, London 1979.Google Scholar
  11. 11-.
    L.Michel, J.Mozrymas, Match 10 (1981) 223.Google Scholar
  12. 12-.
    R.Dirl, These Proceedings.Google Scholar
  13. 13-.
    L.D.Landau, Phys.Z.Soviet 11 (1937) 26, 545.Google Scholar
  14. 14-.
    L.D.Landau, E.M.Lifschitz, Statistical Physics, translation Pergamon Oxford 1965.Google Scholar
  15. 15-.
    A.H.Clifford, Ann.Math. 38 (1937) 533.Google Scholar
  16. 16-.
    L.Michel, J.Mozrymas, B.Stawski, Lecture Notes Phys. 94 (1979) 86, Springer 1979.Google Scholar
  17. 17-.
    H.S.M.Coxeter, W.O.J.Moser, Generators and Relations for discrete groups, Springer (1957).Google Scholar
  18. 18-.
    D.Hilbert, Math.Ann. 36 (1890) 473.Google Scholar
  19. 19-.
    M.Jaric, L.Michel, R.T.Sharp, These Proceedings p. and to appear.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Louis Michel
    • 1
  • Jan Mozrymas
    • 2
  1. 1.I.H.E.S.Bures-sur-YvetteFrance
  2. 2.Institute of Theoretical PhysicsUniversity of WrocławWrocławPoland

Personalised recommendations