Advertisement

Covariant differential operators

  • Michael Harris
  • Hans Plesner Jakobsen
Session I — Group Representations
Part of the Lecture Notes in Physics book series (LNP, volume 180)

Keywords

Holomorphic Function Irreducible Unitary Representation Hermitian Symmetric Space Shilov Boundary Holomorphic Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Harris and H.P. Jakobsen, Singular holomorphic representations and singular modular forms, Math. Ann. 259, 227–244 (1982).Google Scholar
  2. 2.
    H.P. Jakobsen, On singular holomorphic representations, Invent. Math. 62, 67–78 (1980).Google Scholar
  3. 3.
    H.P. Jakobsen, Hermitian symmetric spaces and their unitary highest weight modules, preprint (1981).Google Scholar
  4. 4.
    H.P. Jakobsen, B. Ørsted, I.E. Segal, B. Speh and M. Vergne, Symmetry and causality properties of physical fields, Proc. Natl. Acad. Sci. USA 75, 1609–1611 (1978).Google Scholar
  5. 5.
    I.E. Segal, H.P. Jakobsen, B. Ørsted, S.M. Paneitz and B. Speh, Covariant chronogeometry and extreme distances: Elementary particles, Proc. Natl. Acad. Sci. USA 78, 5261–5265 (1981).Google Scholar
  6. 6.
    S. Helgason, Differential Geometry and Symmetric Spaces, New York: Academic Press (1962).Google Scholar
  7. 7.
    H.P. Jakobsen and M. Vergne, Restrictions and expansions of holomorphic representations, J. Functional Analysis 34, 29–53 (1979).Google Scholar
  8. 8.
    N. Wallach, Analytic continuation of the discrete series II, Trans. Amer. Math. Soc. 251, 19–37 (1979).Google Scholar
  9. 9.
    H. Rossi and M. Vergne, Analytic continuation of the holomorphic discrete series of a semi-simple Lie group, Acta Math. 136, 1–59 (1976).Google Scholar
  10. 10.
    10.M. Kashiwara and M. Vergne, On the Segal-Shale-Weil representation and harmonic polynomials, Invent. Math. 44, 1–47 (1978).Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Michael Harris
    • 1
  • Hans Plesner Jakobsen
    • 2
  1. 1.Brandeis UniversityWalthamUSA
  2. 2.Mathematics InstituteCopenhagen ØDenmark

Personalised recommendations