Completely integrable Hamiltonian systems and the separation of variables

  • P. Winternitz
Session II — Completely Integrable Systems and Group Theory
Part of the Lecture Notes in Physics book series (LNP, volume 180)


A group theoretical approach to the separation of variables is applied to the Hamilton-Jacobi and Laplace-Beltrami equation in the hermitian hyperbolic space HH(2). Symmetry reduction by maximal abelian subgroups of the isometry group SU(2,1) leads to completely integrable systems defined in a Minkowski space and involving nontrivial interactions.


Isometry Group Symmetry Reduction Integrable Hamiltonian System Maximal Abelian Subgroup Group Theoretical Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 0-.
    Work supported in part by the Natural Sciences and Engineering Research Council of Canada and the “Fonds FCAC pour l'aide et le soutien à la recherche du Gouvernement du Québec”.Google Scholar
  2. 1-.
    C.P.Boyer, E.G.Kalnins, and P.Winternitz, Preprint CRMA-1064 (1981) Montreal (to be published).Google Scholar
  3. 2-.
    C.P.Boyer, E.G.Kalnins, and P.Winternitz, Preprint CRMA-1104 (1982), Montreal, (to be published).Google Scholar
  4. 3-.
    P.Winternitz and I.Friś, Yad.Fiz.1, 889 (1965).Google Scholar
  5. 4-.
    P.Winternitz, I.Lukac and Ya.A.Smorodinskii, Yad.Fiz. 7, 192 (1968) Sov.J.Nucl.Phys. 7, 139 (1968)1.Google Scholar
  6. 5-.
    W.Miller,Jr. Symmetry and Separation of Variables, Addison-Wesley, Reading, Mass. 1977.Google Scholar
  7. 6-.
    E.G.Kalnins and W.Miller Jr., Research Report 104, Waikato, New Zealand 1982 (contains an extensive list of references).Google Scholar
  8. 7-.
    W.Miller Jr., J.Patera, and P.Winternitz, J.Math.Phys. 22, 251 (1981).Google Scholar
  9. 8-.
    J.Patera, P.Winternitz, and H.Zassenhaus, Math.Rep.Ac.Sci. (Canada) 2, 231, 237 (1980).Google Scholar
  10. 9-.
    J.Patera, P.Winternitz, H.Zassenhaus, Preprint CRMA-1099 (1982) and to be published.Google Scholar
  11. 10-.
    G.W.Gibbons and C.N.Pope, Comm.Math.Phys. 61, 239 (1978).Google Scholar
  12. 11-.
    C.P.Boyer, Hadronic,J. 4, 2 (1981).Google Scholar
  13. 12-.
    E.G.Kalnins and W.Miller Jr., SIAM J. Math.Analysis 11, 1011 (1980).Google Scholar
  14. 13-.
    L.P.Eisenhart, Ann.Math. 35, 284 (1934).Google Scholar
  15. 14-.
    S.Kobayashi and K.Nomizu, Foundations of Differential Geometry, Vo1.2, Interscience, New York, 1969.Google Scholar
  16. 15-.
    P.Delong, Ph.D. Thesis, U. of Minnesota, 1982.Google Scholar
  17. 16-.
    J.Patera, P.Winternitz and H.Zassenhaus, J.Math.Phys. 15, 1378 (1974).Google Scholar
  18. 17-.
    J.Patera, R.T.Sharp, P.Winternitz, and H.Zassenhaus, J.Math.Phys. 17, 986 (1976).Google Scholar
  19. 18-.
    R.Abraham and J.E.Marsden, Foundations of Mechanics, Benjamin, Reading, 1978.Google Scholar
  20. 19-.
    C.P.Boyer, E.G.Kalnins and W.Miller, Jr., J.Math.Phys. 19, 20 (1978).Google Scholar
  21. 20-.
    L.Gagnon and P.Winternitz, to be published.Google Scholar
  22. 21-.
    F.Calogero, J.Math.Phys. 12, 2191 (1969).Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • P. Winternitz
    • 1
  1. 1.CRMA, Université de MontréalMontréalCanada

Personalised recommendations