Reduction of supersymmetric σ-models on graded manifolds

  • Stefano Sciuto
Session II — Completely Integrable Systems and Group Theory
Part of the Lecture Notes in Physics book series (LNP, volume 180)


A geometrical treatment of supersymmetric σ-models on ordinary and graded manifolds is given:

It is shown that the SuSy σ-models on graded manifolds can be reduced to give generalizations of the SuSy sine-Gordon equation, endowed with an associate linear set. In particular the SuSy generalization of the Complex sine-Gordon model is briefly discussed.


Symmetric Space SuSy Model Bosonic Case Geometrical Treatment Rank Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    For a very good review see for instance: H. Eichenherr, Tvärminne Lectures, CERN preprint TH-3073 (1981).Google Scholar
  2. [2]
    K. Pohlmeyer, Commun. Math. Phys. 46 (1976) 207.Google Scholar
  3. [3]
    H. Eichenherr and M. Forger, Nucl. Phys. B155 (1979) 381.Google Scholar
  4. [4]
    V.E. Zakharov and A.V. Mikhailov, JETP Lett. 27 (1978) 42; Sov. Phys. JETP 47 (1978) 1017.Google Scholar
  5. [5]
    A.V. Mikhailov, JETP Lett. 28 (1978) 512.Google Scholar
  6. [6]
    F. Lund and T. Regge, Phys. Rev. 14 (1976) 1524.Google Scholar
  7. [7]
    B.S. Getmanov, JETP Lett. 25 (1977) 119.Google Scholar
  8. [8]
    S. Sciuto, Phys. Lett. 90B (1979) 75.Google Scholar
  9. [9]
    M.F. Sohnius, Nucl. Phys. B136 (1978) 461.Google Scholar
  10. [10]
    R. D'Auria and S. Sciuto, Nucl. Phys. B171 (1980) 189.Google Scholar
  11. [11]
    E. Napolitano and S. Sciuto, Nuovo Cimento 64A (1981) 406.Google Scholar
  12. [12]
    E. Napolitano and S. Sciuto, Commun. Math. Phys. 84 (1982)171.Google Scholar
  13. [13]
    F.A. Berezin, Sov. J. Nucl. Phys. 30 (1979) 605.Google Scholar
  14. [14]
    P. Di Vecchia and S. Ferrara, Nucl. Phys. B130 (1977) 93; E. Witten, Phys. Rev. D16 (1977) 299.Google Scholar
  15. [15]
    O. Alvarez, Phys. Rev. D17 (1978) 1123; R. Shankar and E. Witten, Phys. Rev. D1 (1978) 2126; A. D'Adda, P. Di Vecchia and M. Luscher, Nucl. Phys. B152 (1979) 125; A.V. Mikhailov and A.M. Perelomov, JETP Lett. 29 (1979) 445; J.F. Schonfeld, Nucl. Phys. B169 (1980) 49 and references contained therein.Google Scholar
  16. [16]
    H. Eichenherr and M. Forger, Commun. Math. Phys. 82 (1981) 227.Google Scholar
  17. [17]
    R. D'Auria, T. Regge and S. Sciuto, Phys. Lett. 89B (1980)363; Nucl. Phys. B171 (1980) 167.Google Scholar
  18. [18]
    E. Napolitano and S. Sciuto, Phys. Lett. 104B (1981) 285.Google Scholar
  19. [19]
    S. Ferrara, L. Girardello and S. Sciuto, Phys. Lett. 76B (1978) 303; L. Girardello and S. Sciuto, Phys. Lett. 77B (1978) 267; M. Chaichian and P.P. Kulish, Phys. Lett. 78B (1978) 413.Google Scholar
  20. [20]
    E. Napolitano and S. Sciuto, Phys. Lett. 113B (1982) 43.Google Scholar
  21. [21]
    E. Witten and D. Olive, Phys. Lett. 78B (1978) 97.Google Scholar
  22. [22]
    B. Zumino, Phys. Lett. 87B (1979) 203Google Scholar
  23. [23]
    L. Grabbi and S. Sciuto, in preparation.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Stefano Sciuto
    • 1
  1. 1.Sezione di Torino dell'Istituto Nazionale di Fisica NucleareIstituto di Fisica Teorica dell'Università di TorinoTorinoItaly

Personalised recommendations