Resonances: Key elements to the understanding of non linear oscillations

  • I. Gumowski
Seminars and Communications
Part of the Lecture Notes in Physics book series (LNP, volume 179)


Periodic Solution Phase Portrait Primary Parameter Subharmonic Resonance Invariant Curf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Gumowski, C. Mira, “Recurrences and discrete dynamic systems”, LN in Math. No. 809, Springer Verlag, (1980)Google Scholar
  2. 2.
    I. Gumowski, C. Mira, “Dynamique chaotique”, Cépadues Editions, Toulouse, (1980)Google Scholar
  3. 3.
    A. A. Andronov, E. A. Leontovich, I. I. Gordon, A. G. Maier, “Bifurcation theory of dynamic systems in the phase plane”, Nauka, Moscow, (1967), and references thereinGoogle Scholar
  4. 4.
    H. von Zeipel, “Recherches sur le mouvement des petites planètes”, Arkiv Math. Astron. Fysik, 11(1916), No. 1,7Google Scholar
  5. 5.
    I. G. Malkin, “Some problems of the theory of non linear oscillations”, GITTL, Moscow, (1956)Google Scholar
  6. 6.
    N. N. Bogoliubov, Iu. A. Mitropolsky, “Asymptotic methods in the theory of non linear oscillations”, Fizmatgiz, Moscow, (1958)Google Scholar
  7. 7.
    G. Schmidt, “Parametererregte Schwingungen”, DVW, Berlin, (1975)Google Scholar
  8. 8.
    Iu. A. Mitropolsky, “Averaging method in non linear mechanics”, Naukova Dumka, Kiev, (1971), and the references therein (till 1682)Google Scholar
  9. 9.
    G. L. Siegel, “Über die Normalform analytischer Differntialgleichungen in der Nähe einer Gleichgewichtslösung”, Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl., No. 5, (1952), p. 21–30Google Scholar
  10. 10.
    A. N. Kolmogorov, “On the conservation of quasi periodic motions for small changes of the Hamiltonian function”, Dokl. Akad. Nauk SSSR, 98(1954), p. 527–530, and V. I. Arnold, “Proof of the theorem of Kolmogorov on the conservation of quasi periodic motions for small changes of the Hamiltonian function”, Uspekhi Mat. Nauk, 18(1963), No. 5(113), p. 13–40Google Scholar
  11. 11.
    J. Moser, “On invariant curves of area-preserving mappings of an annulus”, Nachr. Akad. Wiss. Göttingen, Math.-Phys. K1. IIa, (1962), p. 1–20Google Scholar
  12. 12.
    F. M. Izrailev, B. V. Chirikov, “Stochasticity of a simple dynamic model with separated phase space”, Preprint No. 191, Inst. Iad. Fiziki, Novosibirsk, (1968), and B. V. Chirikov, “Research concerning the theory of non linear resonance and stochasticity”, CERN Trans. No. 71–40, Geneva, (1971)Google Scholar
  13. 13.
    I. Gumowski, “Some relations between differential equations, recurrences and functional iterates”, 9th ICNO, Kiev, (1981)Google Scholar
  14. 14.
    E. Goursat, “Cours d'analyse mathématique”, vol. 1,2,3, Gauthier-Villars, Paris, (1943)Google Scholar
  15. 15.
    V. K. Melnikov, “On the stability of the center for time-periodic perturbations”, Trans. Moscow Math. Soc., 12,1, (1963), p. 1–56Google Scholar
  16. 16.
    P. Holmes, “A non linear oscillator with a strange attractor”, Phil. Trans. Roy. Soc. London, 292,1394, (1979), p. 419–448Google Scholar
  17. 17.
    A. A. Kamel, “Perturbation method in the theory of non linear oscillations”, Celestial mechanics, 3 (1970), p. 90–106Google Scholar
  18. 18.
    L. F. Shulezhko, “Non linear vibration of a plate”, Approximate Methods of solving differential equations, Izd. Akad. Nauk Ukr. SSR, Kiev, (1963), p. 141–154Google Scholar
  19. 19.
    I. Gumowski, R. Thibault, “Dynamic systems with a singular parametric resonance”, EQUADIFF-78, Firenze, (1978), p. 91–98Google Scholar
  20. 20.
    I. Gumowski, “Periodic steady states of dynamic systems and their smooth dependence on parameters”, Colloque Intern. du CNRS No. 332 sur la theorie de l'itération et ses applications, Toulouse, (1982)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • I. Gumowski
    • 1
  1. 1.Dynamic Systems Research GroupUniversity of Toulouse 3France

Personalised recommendations