Periodic and quasi-periodic orbits for twist maps

  • A. Katok
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 179)


Periodic Orbit Boundary Component Rotation Number Invariant Torus Integrable Hamiltonian System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A1]
    V. I. Arnold, Proof of A. N. Kolmogorov's Theoren on the preservation of Quasi-Periodic Motions under small perturbations of the Hamiltonian, Russian Math. Surveys, 18, N. 5, 13–40 (1963).Google Scholar
  2. [A2]
    V. I. Arnold, Small Divisor Problem in Classical and Celestial Mechanics, Russian Math. Surveys, 18, N.6, 85–191 (1963).Google Scholar
  3. [A3]
    V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer Verlag, Graduate Text in Math. 1978.Google Scholar
  4. [Au1]
    S. Aubry. Theorey of the Devil's Staircase, Seminar on the Riemann Problem and complete integrability, 1978-79. Ed. D. G. Chudnovsky, Springer, Lecture Notes in Math., in press.Google Scholar
  5. [Au2]
    S. Aubry, P. Y. Le Daeron, G. Andre, Classical Ground-States of a one-dimensional Model for Incommensurate Structure, submitted to Comm. Math. Phys.Google Scholar
  6. [B1]
    G. D. Birkhoff, On the Periodic Motions of Dynamical Systems, Acta Mathematica, 50, 359–379. Reprinted in Collected Mathematical Papers, vol. II, Amer, Math. Soc. N.Y, 333–353 (1950).Google Scholar
  7. [B2]
    G. D. Birkhoff, Surface transformations and their dynamical applications, Acta Math., 43, 1–119 (1922) Reprinted in Collected Mathematical Papers, vol. II, Amer. Math. Soc. N.Y, 111–229 (1950).Google Scholar
  8. [B3]
    G. D. Birkhoff, Sur Quelques, Courbes Fermeés Remarquable, Bull. Soc. Math. de France, 60, 1–26 (1932); Reprinted in Collected Mathematical Papers, Amer. Math. Soc., N.Y., 418–443 (1950).Google Scholar
  9. [D]
    A. Denjoy, Sur les courbes définies par les équations différentielles à la surface de tore, J. Math. Pure et Appliq, 11, 333–375 (1932).Google Scholar
  10. [G]
    J. M. Greene, The calculation of KAM surgaces, Ann. New York Acad. Sci., 357, 80–89 (1980).Google Scholar
  11. [H]
    M. R. Herman, Handwritten manuscript 1981Google Scholar
  12. [K1]
    A. Katok, Some remarks on Birkhoff and Mather twist map theorems, Ergodic Theory and Dynamical Systems, 2, 2 (1982).Google Scholar
  13. [K2]
    A. Katok, More about Birkhoff periodic orbits and Mather sets for twist maps, Preprint IRES, 1982.Google Scholar
  14. [K3]
    A. Katok, Continuation of the preprint “More about Birkhoff periodic orbits and Mather sets for twist maps, 1982.Google Scholar
  15. [Ko]
    A. N. Kolmogorov, On Quasi Periodic Motions under small perturbations of the Hamiltonian, Doklady AN SSSR, 98, 4, 527–530 (1954) (in Russian).Google Scholar
  16. [M1]
    J. N. Mather, Existence of quasi-periodic orbits for twist homeomorphism of the annulus, Topology, 1982.Google Scholar
  17. [M2]
    J. N. Mather, A Criterion for non-existence of invariant circles. Preprint, 1982.Google Scholar
  18. [M3]
    J. N. Mather. Glancing Billiards, Ergodic Theory and Dynamical Systems, 2, 3–4 (1982).Google Scholar
  19. [M4]
    J. N. Mather, Non-existence of Invariant circles. Preprint, 1982.Google Scholar
  20. [M5]
    J. N. Mather, Non-uniqueness of Solutions of Percival's Euler-Lagrange Equation. Preprint, 1982.Google Scholar
  21. [M6]
    J. N. Mather, Concavity of the Lagrangian for Quasi-Periodic orbits, to appear in Comm. Math. Helv.Google Scholar
  22. [Mo1]
    J. Moser, On Invariant Curves of Area-Preserving Mappings of an Annulus. Nach. Akad. Wiss. Gbttingen, Math.-Phys. Kl, IIa, N 1, 1–20 (1962).Google Scholar
  23. [Mo2]
    J. Moser. Stable and Random Motions in Dynamical Systems, Princeton Univ. Press, 1973.Google Scholar
  24. [N]
    Z. Nitecki, Differentiable Dynamics, MIT Press, 1971.Google Scholar
  25. [P1]
    I. C. Percival, Variational Principles for Invariant Tori and Cantori, in Symposium on Nonlinear Dynamics and Beam-Beam Interactions. Amer. Inst. of Phys. Conf. Proc. N. 57, ed. M. Month, J. C. Herrara, 302–310, 1980.Google Scholar
  26. [P2]
    I. C. Percival, J. Phys. A: Math. Nucl. Gen 12, L57, 1979.Google Scholar
  27. [R1]
    M. Rüssmann, Über invariante Kurven differenzierbarer Abbildungen eines Kreisringer, Nachr. Akad. Wiss. Göttingen, Math.-Phys. K1, II N 5, 67–105 (1970).Google Scholar
  28. [R2]
    H. Rüssmann, On the existence of invariant curves of twist mappings of an annulus. Preprint, 1982. *** DIRECT SUPPORT *** A3418136 00002Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • A. Katok
    • 1
  1. 1.Department of MathematicsUniversity of MarylandCollege ParkUSA

Personalised recommendations