On the analytic structure of chaos in dynamical systems

  • Tassos Bountis
Seminars and Communications
Part of the Lecture Notes in Physics book series (LNP, volume 179)


A number of new and exciting results on the chaotic properties of dynamical systems have been recently obtained by studying their movable singularities in the complex time plane. New, integrable systems were identified by requiring that their solutions admit only poles. Allowing for logarithmic singularities, it has been possible to distinguish between “strongly” and “weakly” chaotic Hamiltonian systems, while in some cases natural boundaries with self-similar structure have been found. The analysis is direct, widely applicable and is illustrated here on some simple examples.


Chaotic Region Chaotic Property Painleve Property Freedom Hamiltonian System Complex Time Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. H. G. Helleman in Fundamental Problems in Statistical Mechanics, vol. 5, North Holland 1991.Google Scholar
  2. 2.
    M. V. Berry in Tonics in Nonlinear Dynamics, A.f.P. Conf. Proc., vol. 46, A.I.P. (1978)Google Scholar
  3. 3.
    A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion, to appear (1982)Google Scholar
  4. 4.
    J. Ford in Fundamental Problems in Statistical Mechanics, vol. l3, North Holland 1975.Google Scholar
  5. 5.
    B. V. Chrikov, Physics Reports 52, 265 (1979).Google Scholar
  6. 6.
    E. L. Ince, Ordinarv Differential Equations, Dover (1956).Google Scholar
  7. 7.
    S. Kovalevskaya, Acta Mathematica 14, 81 (1899).Google Scholar
  8. 8.
    H. T. Davis, Introduction to Nonlinear Diff. and Integral Equations, Dover (1962).Google Scholar
  9. 9.
    A. S. Fokas and M. J. Ablowitz, J. Math. Phys., to appear (1982).Google Scholar
  10. 10.
    M. J. Ablowitz, A. Ramani and H. Segur, Lett. al Nuovo Cimento, 23 (9), 333 (1978).Google Scholar
  11. 11.
    M. J. Ablowitz, A. Ramani and H. Segur, J. Math. Phys. 21(4), 715 and J. Math. Phys. 21(5), 1006 (1980).Google Scholar
  12. 12.
    M. J, Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM series in Appl. Math. (1982).Google Scholar
  13. 13.
    H. Segur, Lectures at International School of Physics “Enrico Fermi”, Varenna, Italy (1980).Google Scholar
  14. 14.
    E. Lorenz, J. Atmos. Sci. 20, 130 (1963).Google Scholar
  15. 15.
    T. Bountis, H. Segur and F. Vivaldi, Phys. Rev. A, 25, 1257 (1982).Google Scholar
  16. 16.
    T. Bountis, H. Segur in Mathematical Methods in Hydrodynamics and Related Dynamical Systems, A.I.P. Conf. Proc. 88, A.I.P. (1982).Google Scholar
  17. 17.
    T. Bountis, AIAA/AAS Astrodynamics Conference Reprint AIAA-82-1443 (1982).Google Scholar
  18. 18.
    Y. F. Chang and G. Corliss, J. Inst. Paths. Applics. 25, 349 (1980).Google Scholar
  19. 19.
    M. Tabor and J. Weiss, Phys. Rev. A, 24, 2157 (1981).Google Scholar
  20. 20.
    Y. F. Chang, M. Tabor, J. Weiss, J. Nth. Phys. 23(4), 531 (1982).Google Scholar
  21. 21.
    J. Yeiss, in same volume as reference 16.Google Scholar
  22. 22.
    A. Ramani, B. Dorizzi, B. Grammatikos, Ecole Polytech., Palaiseau, preprint A497.0482 (1982).Google Scholar
  23. 23.
    B. Dorizzi, B. Grammatikos, A. Ramani, CNET, Issy les Moulineaux, preprint A500.0582 (1982).Google Scholar
  24. 24.
    M. Hénon, C. Heiles, Astron. J., 69(1), 73 (1964).Google Scholar
  25. 25.
    G. Contoooulos, Astrophys. J. 138, 1297 (1963); see also Astron. J. 68, 1(1963).Google Scholar
  26. 26.
    Y. Aizawa, N. Saitô, J. Phys. Soc. Jpn. 32, 1636 (1972).Google Scholar
  27. 27.
    J. M. Greene, private communication.Google Scholar
  28. 28.
    L. S. Hall, Lawrence Livermore Lab., preprint UCID-18980 (1981).Google Scholar
  29. 29.
    B. Grammatikos, Phys. Lett. A, to appear (1982).Google Scholar
  30. 30.
    H. Yoshida, Astronomy Dept., Tokyo Univ. preprint (1981).Google Scholar
  31. 31.
    H. Flaschka, Phys. Rev. B 9, 1924 (1974); Progr. Theor. Phys. 51, 703 (1974): see also J. Moser, Adv. Math. 16, 197 (1975).Google Scholar
  32. 32.
    O. I. Bogoyavlenski, Commun. Math. Phys. 51, 201 (1976); see also B. Kostant, M.I.T. Math. Dept., preprint (1981).Google Scholar
  33. 33.
    B. Dorizzi et al., “New Integrals of Motion for the Toda System”, preprint (1982).Google Scholar
  34. 34.
    I. C. Percival, J. M. Greene, Princeton Plasma Physics Lab. preprint PPPL-1744 (1981).Google Scholar
  35. 35.
    E. T. Whittaker, Analytical Dynamics Chot. III, Dover (1937).Google Scholar
  36. 36.
    The highest power N, in (4.3), is not known à priori. To help overcome this problem Hall (see ref. 28) numerically studies projections of orbits from which it is often possible to infer the value of N from the number of times x (or y) changes sign over one “period” of the motion.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Tassos Bountis
    • 1
  1. 1.Department of Mathematics and Computer ScienceClarkson College of TechnologyPotsdamN. Y.

Personalised recommendations