Chaotic dynamics in Hamiltonian systems with divided phase space

  • Boris V. Chirikov
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 179)


Motion Time Chaotic Motion Motion Period Fourier Amplitude Ergodic Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.I.Arnold and A.Avez, Ergodic Problems of Classical Mechanics, Benjamin (1968).Google Scholar
  2. 2.
    I.P.Kornfeld, Ya.G.Sinai, S.V.Fomin, Ergodic Theory, Nauka, 1980 (in Russian).Google Scholar
  3. 3.
    V.M. Alekseev and M.V. Yakobson, Physics Reports, 75, 287 (1981).Google Scholar
  4. 4.
    B.V. Chirikov, Physics Reports, 52, 263 (1979).Google Scholar
  5. 5.
    A.J. Lichtenberg and M.A. Lieberman, Regular and Stochastic Motion, Springer-Verlag (1982).Google Scholar
  6. 6.
    B. Poincaré, Les methods nouvelles de la méchanique céleste, Vol. II (1893), Sections 225–232; Vol. (1899), Section 401.Google Scholar
  7. 7.
    N.N. Bogoliubov and Yu.A. Mitropolsky, Asymptotic Methods in the Theory of Nonlinear Oscillations, Hindustan Publ. Corp., Dehli, 1961.Google Scholar
  8. 8.
    V.K. Melnikov, Dokl. Akad. Nauk SSSR, 144, 747 (1962) (in Russian).Google Scholar
  9. 9.
    L.P. Shilnikov, Mat. sbornik, 77, 461 (1968) (in Russian).Google Scholar
  10. 10.
    J.M. Greene, J. Math. Phys. 20, 1183 (1979).Google Scholar
  11. 11.
    L.P.Kadanoff, Phys. Rev. Lett. 47, 1641 (1981); S.J. Shenker and L.P. Kadanoff, J. Stat. Phys., 27, 631 (1982).Google Scholar
  12. 12.
    B.V. Chirikov, F.M. Izrailev, D.L. Shepelyansky, in Soviet Scientific Reviews, Section C, Vol. 2 (1981), p. 209.Google Scholar
  13. 13.
    D. P. Escande, Large-Scale Stochasticity in Hamiltonian Systems, Intern. Conf. on Plasma Physics, Göteborg (1982).Google Scholar
  14. 14.
    B.V. Chirikov, D.L. Shepelyansky, Statistics of the Poincaré Recurrences and the Structure of Stochastic Layer of a Nonlinear Resonance, Preprint 81-69, Institute of Nuclear Physics, Novosibirsk (1981) (in Russian).Google Scholar
  15. 15.
    C. Grebogi and A.N. Kaufman, Phys. Rev., A24, 2829 (1981).Google Scholar
  16. 16.
    E.M. Lifshits, L.P. Pitaevsky, Physical Kinetics, Nauka (1979) (in Russian).Google Scholar
  17. 17.
    J.L. Lebowitz, in Statistical Mechanics New Concepts, New Problems, New Applications, Univ. of Chicago Press (1972)Google Scholar
  18. 18.
    R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics, Wiley, New York (1975), Appendix.Google Scholar
  19. 19.
    G.E. Norman, L.S. Polak, Dokl. Akad. Nauk SSSR, 263, 337 (1982) (in Russian).Google Scholar
  20. 20.
    D. Bora, P.I. John, Y.C. Saxena and R.K. Varma, Plasma Physics, 22, 653 (1980).Google Scholar
  21. 21.
    S.R. Channon and J.L. Lebowitz, Ann. N.Y. Acad. Sci., 357, 108 (1980).Google Scholar
  22. 22.
    J.M. Greene, J. Math. Phys., 3, 760 (1968).Google Scholar
  23. 23.
    J.M. Greene, in Nonlinear Dynamics and the Beam-Beam Interaction, A.I.P. Conf. Proc., N°5 1979, p. 257.Google Scholar
  24. 24.
    A.Z. Patashinskii and V.L. Pokrovskii, Fluctuation Theory of Phase Transitions, Pergamon (1979).Google Scholar
  25. 25.
    A.Ya. Khinchin, Continued Fractions, Fizmatgiz, Moscow (1961) (in Russian).Google Scholar
  26. 26.
    J. Moser, Stable and Random Motions in Dynamical Systems, Princeton Univ. Press (1573).Google Scholar
  27. 27.
    V.I. Arnold, Usp. mat. nauk, 18, N°6, 91 (1963)(in Russian).Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Boris V. Chirikov
    • 1
  1. 1.Institute of Nuclear PhysicsNovosibirskUSSR

Personalised recommendations