Entropy and smooth dynamics

  • S. E. Newhouse
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 179)


Periodic Point Strange Attractor Topological Entropy Positive Lebesgue Measure Piecewise Monotone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Bowen, Some systems with unique equilibrium states, Math. Sys. Theory 8 (1974), 193–202.Google Scholar
  2. 2.
    S.N. Chow, J. Hale, and J. Mallet-Paret, An example of bifurcation to homoclinic orbits, J. Diff Eqtns. 37 (1980), 351–373.Google Scholar
  3. 3.
    M. Denker, C. Grillenberger, and K. Sigmund, Ergodic theory on compact spaces, Lecture Notes in Math, 527, Springer-Verlag, NY (1976).Google Scholar
  4. 4.
    A. Fathi, M. Herman, J. Yoccoz, A proof of Pesin's stable manifold theorem, preprint, Bât. 425, Univ. de Paris-Sud, Orsay, France.Google Scholar
  5. 5.
    J. Guckenheimer, One dimensional dynamics, Non-linear Dynamics, NYAcad.of Sci, 357 (1980), 343–348.Google Scholar
  6. 6.
    F. Hofbauer, The structure of piecewise montonic transformations, Jour. Ergodic Theory and Dyn. Sys. 1 (1981), 159–179.Google Scholar
  7. 7.
    P. Holmes, A non-linear oscillator with a strange attractor, Phil. Trans. Roy. Soc. A292 (1979), 419–448.Google Scholar
  8. 8.
    A. Katok, Lyapunov exponents, entropy, and periodic points for diffeomorphisms, Publ. Math. IHES 51 (1980), 137–174.Google Scholar
  9. 9.
    R. Mane, A proof of Pesin's formula, Jour. Ergodic theory and Dyn. Sys. 1 (1981), 95–103.Google Scholar
  10. 10.
    M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings, Asterisque 50 (1977), 299–311.Google Scholar
  11. 11.
    S. Newhouse, Lectures on Dynamcal Systems, Progress in Math. 8 (1980), Birkhäuser, Boston, 1–115.Google Scholar
  12. 12.
    V. Oseledec, A multiplicative ergodic theorem, Trans. Mosc. Math. Soc. 1968, 197–231.Google Scholar
  13. 13.
    J. Pesin, Families of Invariant manifolds corresponding to non-zero characteristic exponents, Math-USSR Izvestia 10 (1976), 1261–1305. Lyapunov characteristic exponents and smooth ergodic theory Russ. Math. Surveys 32 (1977), 552–117.Google Scholar
  14. 14.
    C. Pugh and M. Shub, Differentiability and continuity of invariant manifolds, Non-linear Dynamics, Ann. N Y Acad of Sci. 357 (1980), 322–330.Google Scholar
  15. 15.
    D. Ruelle, An inequality for the entropy of differentiable maps, Bol. Soc. Bras. Mat. 9 (1978), 83–87.Google Scholar
  16. 16.
    D. Ruelle, Ergodic theory of differentiable dynamcal systems, Publ. Math. IRES 50 (1980), 275–306.Google Scholar
  17. 17.
    D. Ruelle, Measures describing a turbulent flow, Non-linear Dynamics, Ann. NYAcad, of Sci. 357 (1980), 1–10.Google Scholar
  18. 17a.
    D. Ruelle, Thermodynamic formalism, Encyclopedia of Mathematics and Its Applications 5, Addison-Wesley, 1978.Google Scholar
  19. 18.
    S. Smale, Diffeomorphisms with many periodic points, Differential and Combinatorial Topology (ed. S.S. Cairns), Princeton Univ. Press 196, 63–80.Google Scholar
  20. 19.
    S.Van Strien, On the bifurcations creating horseshoes, Dynamical Sys. and Turbulence, Warwick 1980, Lec. Notes in Math. 898, Springer-Verlag, 316–352.Google Scholar
  21. 20.
    Y. Ueda., Explosion of strange attractors exhibited by Duffing's equation, Non-linear Dynamics, Ann. N Y Acad. of Sci. 357, (1980) 422–435.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • S. E. Newhouse
    • 1
  1. 1.Department of MathematicsUniversity of North CarolinaChapel HillUSA

Personalised recommendations