Emission and absorption of photons in gaseous detectors

  • G. Charpak
Session I. Gas Detectors
Part of the Lecture Notes in Physics book series (LNP, volume 178)


In this paper some of the progresses due to a better understanding of the emission and absorption of photons in gaseous detectors are discussed. The possibility of imaging photons from 4 to 10 eV offers many possible applications, discussed in this paper, for X-ray imaging, high-energy calorimetry, particle identification, etc.

While ultraviolet photons have been known for a long time to play a major role in the mechanism of the Geiger counter, more recent developments are due to a deeper understanding and control of emission and absorption of photons in gaseous detectors.

This is illustrated by the operation of wire chambers in the limited Geiger or streamer mode, gas scintillation proportional counters, proportional photo-ionization scintillation counters, multistep avalanche chambers, and various types of detectors for photon imaging.

At a symposium held in conjunction with the commemoration of the 100th anniversary of the birth of H. Geiger, I thought it appropriate to discuss the photon emission or absorption in gaseous detectors, and this for several reasons. It so happens that my group has been actively engaged, at CERN, in some developments based on the exploitation of these phenomenal1–3). Also my personal interest in particle detectors grew from the construction of Geiger counters in my first steps as an experimentalist: looking in the dark at the wires illuminated by the excited ion sheath in Geiger counters, I started the study of light pulses in proportional counters4).

At the present time many groups have invented new devices based on the understanding or control of the various electromagnetic radiation phenomena connected with the collisions of electrons in gases and I would like, in this contribution, to review briefly some of these advances in detector techniques.


Gaseous Detector Drift Chamber Geiger Counter Streamer Mode Wire Chamber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    G. Charpak, S. Majewski and F. Sauli, Nucl. Instrum. Methods 126 (1975) 381.Google Scholar
  2. 2).
    G. Charpak, P. Policarpo and F. Sauli, IEEE Trans. Nucl. Sci. NS-27 (1980) 212.Google Scholar
  3. 3).
    G. Charpak, S. Majewski and F. Sauli, IEEE Trans. Nucl. Sci. NS-23 (1976) 202.Google Scholar
  4. 4).
    G. Charpak and G.A. Renard, J. Phys. Radium 17 (1956) 585.Google Scholar
  5. 5).
    A.J.P.L. Policarpo, Physica Scripta 23 (1981) 539.Google Scholar
  6. 6).
    G.S. Hurst and A. Klots, Adv. in Rad. Chem. 5 (1976) 1.Google Scholar
  7. 7).
    V.D. Peskov, J. Applied Spectroscopy (USSR) 30 (1979) 860.Google Scholar
  8. 8).
    M. Suzuki and S. Kubota, Nucl. Instrum. Methods 164 (1979) 197.Google Scholar
  9. 9).
    T. Takahashi, S. Himi, M. Suzuki, Jian-zhi Ruan (Gen) and S. Kubota, Emission spectra from Ar-Xe, Ar-Kr, Ar-N2, Ar-CH4, Ar-CO2 and Xe-N2 gas scintillation proportional counter, Rikkyo University (Tokyo, Japan) Report RUP 81-16, Dec. 1981.Google Scholar
  10. 10).
    S. Girard, G. Lévêque and J. Robin, J. Phys. E: Sci. Instrum. 12 (1979) 719.Google Scholar
  11. 11).
    J. Séguinot and T. Ypsilantis, Nucl. Instrum. Methods 142 (1977 377.Google Scholar
  12. 12).
    F. Sauli, Rediscovering the gaseous photodiode, preprint CERN-EP/82-26 (1982), submitted to Nucl. Instrum. Methods.Google Scholar
  13. 13).
    D. Anderson, Extraction of electrons from a liquid photocathode into a low pressure wire chamber, preprint CERN-EP/82-100 (1982), submitted to Phys. Lett.Google Scholar
  14. 14).
    A. Trost, Phys. Z. 35 (1935) 801.Google Scholar
  15. 15).
    K.H. Lauterjung and W. Gruhle, A new direct localizing and measuring device for extended radiation, in 2nd United Nations Int. Conf. on the Peaceful Uses of Atomic Energy, Geneva, 1958.Google Scholar
  16. 16).
    G. Charpak and F. Sauli, Nucl. Instrum. Methods 96 (1971) 363.Google Scholar
  17. 17).
    H. Neuert, in Kernphysikalische Messverfahren (G. Braun, Karlsruhe, 1966).Google Scholar
  18. 18).
    G. Charpak, D. Rahm and H. Steiner, Nucl. Instrum. Methods 80 (1970) 13.Google Scholar
  19. 19).
    R. Bouclier, G. Charpak, Z. Dimčvski, H.G. Fischer, F. Sauli, G. Coignet and G. Flügge, Nucl. Instrum. Methods 88 (1970) 149.Google Scholar
  20. 20).
    G. Charpak, G. Petersen, A. Policarpo and F. Sauli, IEEE Trans. Nucl. Sci. NS-25 (1978) 122.Google Scholar
  21. 21).
    J. Fischer, H. Okuno and A.H. Walenta, Nucl. Instrum. Methods 151 (1978) 451.Google Scholar
  22. 22).
    A. Breskin, A. Diamant-Berger, G. Marel, G. Tarlé, R. Turlay, G. Charpak and F. Sauli, Nucl. Instrum. Methods 123 (1975) 225.Google Scholar
  23. 23).
    G.D. Alekseev, N.A. Kalinina, V.V. Karpukhin, D.M. Khazins and V.V. Kruglov, Nucl. Instrum. Methods 153 (1978) 157.Google Scholar
  24. 24).
    G.D. Aleskeev, D.M. Khazins and V.V. Kruglov, Self-quenching streamer discharge in a wire chamber, Dubna report D13-12027 (1978).Google Scholar
  25. 25).
    G. Battistoni, E. Iarocci, M.M. Massai, G. Nicoletti and L. Trasatti, Nucl. Instrum. Methods 152 (1978) 423.Google Scholar
  26. 26).
    M. Atac, A.V. Tollestrup and D. Potter, IEEE Trans. Nucl. Sci. NS-29 (1982) 388.Google Scholar
  27. 27).
    A.J.P.L. Policarpo, Space Sci. Instrum. 3 (1977) 77.Google Scholar
  28. 28).
    H. Nguyen Ngoc, J. Jeanjean, H. Itoh and G. Charpak, Nucl. Instrum. Methods 172 (1980) 603.Google Scholar
  29. 29).
    J. Davelaar, G. Manza, A. Peacwick, B.G. Taylor and J.A.M. Bleeker, IEEE Trans. Nucl. Sci. NS-28 (1980) 196.Google Scholar
  30. 30).
    A. Policarpo, Nucl. Instrum. Methods 153 (1978) 389.Google Scholar
  31. 31).
    D. Anderson, Nucl. Instrum. Methods 177 (1980) 125.Google Scholar
  32. 32).
    C.J. Hailey, W.H.M. Ku and M.H. Vartanian, IEEE Trans. Nucl. Sci. NS-29 (1982) 1381.Google Scholar
  33. 33).
    G. Coutrakon, M. Cribier, J.R. Hubbard, Ph. Mangeot, J. Mullie, J. Tichit, R. Bouclier, A. Breskin, G. Charpak, G. Million, A. Peisert, J.C. Santiard, F. Sauli, C.N. Brown, D. Finley, H. Glass, J. Kirz and R.L. MacCarthy, Proc. Nuclear Science Symposium, San Francisco, 1981 (ed. G.F. Knoll), IEEE Trans. Nucl. Sci. NS-29 (1982) 323.Google Scholar
  34. 34).
    E. Barrelet, T. Ekelöf, B. Lund-Jensen, J. Séguinot, J. Tocqueville, M. Urban and T. Ypsilantis, A two-dimensional, single-photoelectron drift detector for Cherenkov ring imaging, preprint CERN-EP/82-09 (1982), submitted to Nucl. Instrum. Methods.Google Scholar
  35. 35).
    M. Simon and T. Baum, A scintillation drift chamber with 14 cm drift path, preprint University of Siegen Sl 82-6 (1982).Google Scholar
  36. 36).
    V.I. Baskakov, V.K. Chernjatin, B.A. Dolgoshein, Y.N. Lebedenko, A.S. Romanjuk, V.H. Fedorov, I.L. Gravilenko, S.P. Konovalov, S.N. Majburov, S.V. Muravjev, V.P. Postovetov, A.P. Shmeleva and P.S. Vasiljev, Nucl. Instrum. Methods 158 (1979) 129.Google Scholar
  37. 37).
    O.H. Siegmund, J.C. Culham, I.M. Mason and P.W. Sanford, Nature 295 (1982) 678.Google Scholar
  38. 38).
    D. Anderson and G. Charpak, Some advances in the use of the light produced by electron avalanches in gaseous detectors, preprint CERN-EP/82-05 (1982), submitted to Nucl. Instrum. Methods.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • G. Charpak
    • 1
  1. 1.CERNGenevaSwitzerland

Personalised recommendations