Far-Infrared cyclotron resonance of hot carriers in InSb

  • Eizo Otsuka
Properties of Indium-Antimonide in High Magnetic Fields
Part of the Lecture Notes in Physics book series (LNP, volume 177)


Far-infrared laser cyclotron resonance has been applied to InSb for the study of the hot carrier system. The hot carriers are produced at 4.2 K or below either by pulsed electric field or by band-gap photoexcitation. Joint application of electric field and photoexcitation is also put on trial. Electrical excitation yields normal orbital electron temperature analysis, whereas optical excitation evokes the spin temperature concept of the conduction electron and enables us to find its spin relaxation time.


Electron Temperature Cyclotron Resonance Optical Excitation Spin Relaxation Time Electrical Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. L. I. Kobayashi and E. Otsuka: J. Phys. Chem. Solids 35 (1974) 839.Google Scholar
  2. 2.
    0. Matsuda and E. Otsuka: J. Phys. Chem. Solids 40 (1979) 819.CrossRefGoogle Scholar
  3. 3.
    E. Otsuka, T. Ohyama and K. Fujii: J. de Phys. 42 (1981) C7–393.Google Scholar
  4. 4.
    T. Ohyama, K. Fujii and E. Otsuka: Jpn. J. Appl. Phys. 21 (1982) 865.Google Scholar
  5. 5.
    0. Matsuda and E. Otsuka: J. Phys. Chem. Solids 40 (1979) 809.CrossRefGoogle Scholar
  6. 6.
    O. Matsuda and E. Otsuka: Solid State Commun. 26 (1978) 925.CrossRefGoogle Scholar
  7. 7.
    E. Gornik: Phys. Rev. Lett. 29 (1972) 595.CrossRefGoogle Scholar
  8. 8.
    K. L. I. Kobayashi, K. F. Komatsubara and E. Otsuka: Phys. Rev. Lett. 30 (1973) 702.CrossRefGoogle Scholar
  9. 9.
    E. Otsuka: Infrared and Millimeter Waves, Vol. 3, ed. K. J. Button (Academic, New York 1980) 347.Google Scholar
  10. 10.
    R. Ulbrich: Phys. Rev. B8 (1973) 5719.Google Scholar
  11. 11.
    11.W. Shockley: Bell System Tech. J. 30 (1951) 990.Google Scholar
  12. 12.
    E. Otsuka, T. Ohyama and K. Fujii: Jpn. J. Appl. Phys. 20 (1981) L885.Google Scholar
  13. 13.
    R. J. Elliott: Phys. Rev. 96 (1954) 266.CrossRefGoogle Scholar
  14. 14.
    P. Boguslawski and W. Zawadzki: J. Phys. C13 (1980) 3933.Google Scholar
  15. 15.
    P. Boguslawski: Solid State Commun. 33 (1980) 389.CrossRefGoogle Scholar
  16. 16.
    F. J. Blatt: J. Phys. Chem. Solids 1 (1957) 262.CrossRefGoogle Scholar
  17. 17.
    E. Otsuka, K. Murase and J. Iseki: J. Phys. Soc. Jpn. 21 (1966) 1104.Google Scholar
  18. 18.
    E. Otsuka, K. Fujii and K. L. I. Kobayashi: Jpn. J. Appl. Phys. 12 (1973) 1600.Google Scholar
  19. 19.
    E. Otsuka: J. Phys. Soc. Jpn. 50 (1981) 189.Google Scholar
  20. 20.
    K. L. I. Kobayashi, K. F. Komatsubara, E. Otsuka, T. Ohyama and 0. Matsuda: Proc. 15th Int. Conf. on Solid State Devices, Tokyo 1973, J. Jpn. Soc. Appl. Phys. 43 Supplement (1974) 301.Google Scholar
  21. 21.
    J. Degani, R. F. Leheny, R. E. Nahory and J. P. Heritage: Appl. Phys. Lett. 39 (1981) 569.CrossRefGoogle Scholar
  22. 22.
    Jagdeep Shah, R. E. Nahory, R. F. Leheny, J. Degani: Appl. Phys. Lett. 40 (1982) 505.CrossRefGoogle Scholar
  23. 23.
    T. Ohyama, K. Murase and E. Otsuka: J. Phys. Soc. Jpn. 29 (1970) 912.Google Scholar
  24. 24.
    D. G. Thomas, J. J. Hopfield and W. M. Augustyniak: Phys. Rev. 140 (1965) A202.CrossRefGoogle Scholar
  25. 25.
    T. Sanada, K. Matsushita, T. Ohyama and E. Otsuka: J. Phys. Soc. Jpn. 45 (1978) 501.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Eizo Otsuka
    • 1
  1. 1.Department of PhysicsCollege of General Education Osaka UniversityToyonakaJapan

Personalised recommendations