Electronic structure of semiconductor superlattices

  • M. Altarelli
Magneto-Optics and Electronic Structure of 2D-Systems
Part of the Lecture Notes in Physics book series (LNP, volume 177)


A new method for the calculation of the electronic structure of semiconductor superlattices in the envelope-function approximation is presented. The method is particularly suited to a description of type-II superlattices (e.g. InAs - GaSb). The band-edges of the constituent materials are realistically described, and appropriate boundary conditions are derived from the envelope functions. To determine the energy levels, a variational principle is obtained, which automatically produces correctly matched solutions and reduces the numerical work to a standard matrix diagonalization. Results are presented for InAs-GaSb superlattices. They reveal novel aspects of the band-crossing transition which occurs with increasing superlattice period and which produces a zero-gap or very-narrow-gap semiconductor state, rather than a true semimetal.


Envelope Function Band Parameter Semiconductor Superlattices Ordinary Quantum Mechanic Conduction Subband 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See e.g. L.L. Chang, J.Phys.Soc.Japan 49, Suppl.A, 997 (1980); P. Voisin et al, ib. 1005 (1980)Google Scholar
  2. 2.
    G.A. Sai-Halasz, L.L. Chang, J.M. Welter, C.-A. Chang and L. Esaki, Solid State Commum. 27, 935 (1978)CrossRefGoogle Scholar
  3. 3.
    G.A. Sai-Halasz, L. Esaki and W. Harrison, Phys.Rev. B 18, 2812 (1978)CrossRefGoogle Scholar
  4. 4.
    H. Sakaki, L.L. Chang, G.A. Sai-Halasz, C.-A. Chang and L. Esakil Solid State Commun. 26, 589 (1978)CrossRefGoogle Scholar
  5. 5.
    J.C. Maan, M. Altarelli, H. Sigg, P. Wyder, L.L. Chang and L. Esaki, Surface Sci. 113, 347 (1982)CrossRefGoogle Scholar
  6. 6.
    J. Ihm, P.K. Lam and M.L. Cohen, Phys.Rev. B 20, 4120 (1978)CrossRefGoogle Scholar
  7. 7.
    A. Madhukar, N.V. Dandekar and R.N. Nucho, J. Vac. Sci. Tech. 16, 1507 (1979)CrossRefGoogle Scholar
  8. 8.
    S.R. White and L.J. Sham, Phys. Rev. Lett. 47, 879 (1981)CrossRefGoogle Scholar
  9. 9.
    G. Bastard, Phys. Rev. B 24, 5693 (1981)CrossRefGoogle Scholar
  10. 10.
    G.E. Marques and L.J. Sham, Surface Sci. 113, 131 (1982)CrossRefGoogle Scholar
  11. 11.
    E.O. Kane, in “Semiconductors and Semimetals”, R.K. Willardson and A.C. Beer, eds., (Adademic, New York, 1966) Vol.1, p. 75Google Scholar
  12. 12.
    J.M. Luttinger, Phys. Rev. 102, 1030 (1956)CrossRefGoogle Scholar
  13. 13.
    C.R. Pidgeon, D.L. Mitchell and R.N. Brown, Phys. Rev. 154, 737 (1967)CrossRefGoogle Scholar
  14. 14.
    K. Suzuki and N. Miura, J. Phys. Soc. Japan 39, 148 (1975)Google Scholar
  15. 15.
    L.M. Roth, B. Lax and S. Zwerdling, Phys. Rev. 114, 90 (1959)CrossRefGoogle Scholar
  16. 16.
    See e.g. M. Altarelli and F. Bassani, in “Handbook of Semiconductors”,Vol. 1, W. Paul ed., (North-Holland, Amsterdam, 1982) p. 269 and references thereinGoogle Scholar
  17. 17.
    H. Schlosser and P.M. Marcus, Phys. Rev. 131, 2529 (1963), especially Appendix 1CrossRefGoogle Scholar
  18. 18.
    T. Loucks, “The Augmented Plane Wave Method”, (Benjamin, New York, 1967)Google Scholar
  19. 19.
    G. Döhler, Surface Sci. 98, 108 (1980)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • M. Altarelli
    • 1
  1. 1.Max-Planck-Institut für FestkörperforschungStuttgart 80Germany

Personalised recommendations