Magnetoconductivity and cyclotron resonance studies on Na+-contaminated Si-SiO2-interfaces

  • H. R. Chang
  • F. Koch
Magneto-Transport in 2D- and Intercalated Systems
Part of the Lecture Notes in Physics book series (LNP, volume 177)


Na+-ions at the Si-SiO2-interface are a readily controlled impurity. We investigate the electronic properties of these Na+-states using the techniques and methods of electron subband studies in a magnetic field. Data on the influence of interface Na+ on the cyclotron mass mc* and the electron scattering rate are presented. The strong ddmping of the resonance at Na+-concentration below 1011cm−2 is correlated with negative magnetoresistance and unusually strong scattering in the dc-magnetoconductivity. We suggest that the effects are caused by a Na+-induced defect complex. For Na+-concentration above 1011cm−2 the scattering rate measured here confirms that derived from transport studies in the absence of a magnetic field.


Cyclotron Resonance Oxide Charge Negative Magnetoresistance Cyclotron Mass Capacitor Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F.F. Fang, A.B. Fowler, and A. Hartstein, Phys.Rev. B 16, 4446 (1977)CrossRefGoogle Scholar
  2. 2.
    A. Hartstein and F.F. Fang, Phys.Rev. B 18, 5502 (1978).CrossRefGoogle Scholar
  3. 3.
    A. Hartstein, A.B. Fowler, and M. Albert, Surface Sci. 98, 181 (1980).CrossRefGoogle Scholar
  4. 4.
    A. Hartstein and A.B. Fowler, Phys.Rev. Lett. 34, 1435 (1975).CrossRefGoogle Scholar
  5. 5.
    A.B. Fowler and A. Hartstein, Philos.Mag. B 42, 949 (1980).Google Scholar
  6. 6.
    A.W. Overhauser, Phys.Rev. B 18, 2884 (1980).CrossRefGoogle Scholar
  7. 7.
    B.E. Sernelius and K.F. Berggren, Surface Sci. 98, 191 (1980).CrossRefGoogle Scholar
  8. 8.
    R.J. Wagner, T.A. Kennedy, B.D. McCombe, and D.C. Tsui, Phys.Rev. B 22, 945 (1980).CrossRefGoogle Scholar
  9. 9.
    G. Abstreiter, F. Koch, P. Goy, and Y. Couder, Phys.Rev. B 14, 2494 (1976).CrossRefGoogle Scholar
  10. 10.
    J.P. Kotthaus, G. Abstreiter, F. Koch, and R.Ranvaud, Phys.Rev. Lett. 34, 151 (1975).CrossRefGoogle Scholar
  11. 11.
    H.J. Mikeska and H. Schmidt, Z. Physik 20, 43 (1975).CrossRefGoogle Scholar
  12. 12.
    G. Abstreiter, J.P. Kotthaus, F. Koch, and G. Dorda, Phys.Rev. B 14, 2480 (1976).CrossRefGoogle Scholar
  13. 13.
    J. Binder, K. Germanova, A. Huber, and F. Koch, Phys.Rev. B 20, 2382 (1979).CrossRefGoogle Scholar
  14. 14.
    private communication.Google Scholar
  15. 15.
    B. Vinter, Phys.Rev. B (in press).Google Scholar
  16. 16.
    See for example: D.J. Di Maria, J.Appl.Phys. 52, 7251 (1981).CrossRefGoogle Scholar
  17. 17.
    H.R. Chang and F. Koch, Solid State Commun. 38, 1189 (1981).CrossRefGoogle Scholar
  18. 18.
    See for example: R.C. Dynes, Surface Sci. 113, 510 (1982).CrossRefGoogle Scholar
  19. 19.
    H.C. Cheng and F. Koch, Solid State Commun. 37, 911 (1981).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • H. R. Chang
    • 1
  • F. Koch
    • 1
  1. 1.Physik-DepartmentTechnische Universität MünchenGarchingGermany

Personalised recommendations