Advertisement

Critical comparison of the theoretical models for anomalous large lattice relaxation in III–V compounds

  • F. Beleznay
Part II. Theory
Part of the Lecture Notes in Physics book series (LNP, volume 175)

Abstract

Highly anomalous properties of some deep levels have recently been observed in many semiconductor materials, especially in III-V compounds and mixed crystals of them. Perhaps the most spectacular is the observation of the metastable effects such as persistent photoconductivity and photocapacitance quenching; accompanied with anomalous photoexcitation, absorption cross section and non-exponential time kinetics.

Most of the proposed theoretical models try to explain some of this properties neglecting some other important facts. Here a critical comparison between conflicting theoretical models is made and a new model is discussed which might explain the significant features of this complex problem.

Keywords

Anomalous Property Mixed Crystal Transition Metal Impurity Persistent Photoconductivity Configuration Coordinate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.J. Nelson, Appl. Phys. Lett. 31, 351 (1977)Google Scholar
  2. 2.
    D.V. Lang and R.A. Logar, Phys. Rev. Lett. 39, 635 (1977)Google Scholar
  3. 3.
    D.V. Lang, R.A. Logan and M. Jaros, Phys. Rev. B19, 1015 (1979)Google Scholar
  4. 4.
    G. Vincent and D. Bois, Solid State Commun. 27, 431 (1978)Google Scholar
  5. 5.
    G. Vincent, D. Bois and A. Chartze, J. Appl. Phys. 53, 3643 (1982)Google Scholar
  6. 6.
    G.M. Martin, Appl. Phys. Lett. 39, 747 (1981)Google Scholar
  7. 7.
    J.M. Langer, Proc. 15th Conf. Pnys. Semiconductors, Journal of the Phys. Soc. of Japan 49, 207 (1980)Google Scholar
  8. 8.
    D.V. Lang, ibid 49, 215 (1980)Google Scholar
  9. 9.
    M.K. Sheinkman and A.Ya. Shik, Fiz. Tekh. Poluprovodn. 10, 209 (1976) (Sov. Phys. Semicond. 10, 128 (1976))Google Scholar
  10. 10.
    H.J. Queisser and D.E. Theodorou, Phys. Rev. Lett. 43, 401 (1979)Google Scholar
  11. 11.
    L.A. Labedo, private communication, to be publishedGoogle Scholar
  12. 12.
    V. Sa-yakanit, Phys. Rev. B 19, 2266 (1979)Google Scholar
  13. 13.
    Shui Lai and M.V. Klein, Phys. Rev. Lett. 44, 1087 (1980)Google Scholar
  14. 14.
    C.H. Herry and D.V. Lang, Phys. Rev. B 15, 989 (1977)Google Scholar
  15. 15.
    S. Makram-Ebeid and M. Lannov, Phys. Rev. Lett. 48, 1281 (1982)Google Scholar
  16. 16.
    S. Pozowski, L. Konczewich, M. Konczykowski, R. Aulombard and J.L. Robert, Proc. 15th Int. Conf. Phys. Semiconductors, Journal of the Phys. Soc. of Japan 49, 271 (1980)Google Scholar
  17. 17.
    G.A. Baraff, E.O. Kane and M. Schlütez, ibid. 49, 231 (1980)Google Scholar
  18. 18.
    F. Beleznay, Recent Development is Condensed Matter Physics (Plenum Press, 1981) Vol. 1, p. 743Google Scholar
  19. 19.
    B. Okai and J. Yoshimoto, J. Phys. Soc. Japan 45, 1880 (1979)Google Scholar
  20. 20.
    D.S. Rimai and R.J. Sladek, Solid State Commun 30, 591 (1979)Google Scholar
  21. 21.
    R.A. Cooke, R.J. Nicholas, R.A. Stzadling, J.C. Portal and S. Abkenazy, Solid State Commun. 26, 11 (1978)Google Scholar
  22. 22.
    The more detailed derivation of onr model with different calculations will be published elsewhere. There a critical comparison with polaron-type calculations will also be givenGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • F. Beleznay
    • 1
  1. 1.Research Institute for Technical Physics of the Hungarian Academy of SciencesBudapestHungary

Personalised recommendations